Self-Healing Smart Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Self-Healing Smart Materials - Группа авторов страница 17

Self-Healing Smart Materials - Группа авторов

Скачать книгу

a self-healing composite based on the dispersion of microcapsules with a healing agent in a polymeric matrix. The adhesion between the capsule and the matrix plays a very important role, since it is directly related with the load transfer to the microcapsule, and to its ability to release the healing agent [22, 49]. Another disadvantage is that once the healing agent has been consumed in one or multiple repairing events, the material loses its self-healing feature. This last disadvantage is one of the most important differences in comparison with intrinsic self-healing systems, as we will show in the next section.

      Figure 1.7 SEM images of the scratch of (a) BS-55, (b) CS-55, (c) SH-55, (d) BS-60, (e) CS-60, and (f) SH-60 after 12 h of UV irradiation (wavelength: 310 nm; power: 582 W/m2). Reprinted with permission from Ref. [49]. Copyright (2019) American Chemical Society.

Schematic illustration of (I) 2-ureido-4[1H]-pyrimidinone (UPy), and a scheme showing its association-dissociation process. (II) Self-healing of a UPy-based coating at 80 °C for 2 min: (a) and (b) optical microscope images of the coating before and after healing, and (c) SEM image of the healed coating.

      Figure 1.8 (I) 2-ureido-4[1H]-pyrimidinone (UPy), and a scheme showing its association-dissociation process. (II) Self-healing of a UPy-based coating at 80 °C for 2 min: (a) and (b) optical microscope images of the coating before and after healing, and (c) SEM image of the healed coating. Reproduced with permission from Ref. [55]; Copyright (2018) John Wiley & Sons, Inc.

Schematic illustration of (I) 2-ureido-4[1H]-pyrimidinone (UPy), and a scheme showing its association-dissociation process. (II) Self-healing of a UPy-based coating at 80 °C for 2 min: (a) and (b) optical microscope images of the coating before and after healing, and (c) SEM image of the healed coating.

      Figure 1.9 (I) Diels Alder reversible reaction. (II) (a) Synthesis of the tetrafunctional monomer (1); (b) formation of the DA-based network (3); (c)–(e) healing/recycling process. Reprinted with permission from Ref. [72]. Copyright (2014) John Wiley & Sons, Inc.

      Dynamic covalent bonds (DCBs), in contrast to reversible bonds, can be used to produce self-healing intrinsic polymers that maintain their cross-linked structure even at high temperatures during the healing process [19, 76, 77]. The exchange reactions between dynamic bonds need to be activated through an external stimulus. The most usual one is heat, but some dynamic bonds respond to light, and in a lesser extent to other stimuli such as mechanical stress [78–80] or solvents [81, 82]. Light responsive DCBs based on the sulfur chemistry were extensively studied by C. Bowman’s group [83–89]. The healing mechanism of these materials relies on bond exchanges through addition-fragmentation chain transfer. These polymers are capable not only of self-healing, but also of undergoing selective plastic deformation through the use of appropriate masks. This can be used to create 2D patterns on the material, as shown in Figure 1.10-I. Matyjaszewski and co-workers also used light-activated reactions to produce self-healing polymers. Their polymeric networks have either trithiocarbonate (TTC) [90, 91] or thiuram disulfide (TDS) [92] moieties acting as the dynamic crosslinks. Mechanical tests performed on the latter showed that around 90% of the mechanical strength could be recovered by visible light irradiation (Figure 11.0-II). Some of the advantages of the use of light to trigger the self-healing are highlighted by the authors: the healing can be performed at room temperature, preserving the substrate (especially useful when it cannot withstand higher temperatures); no solvents are needed; the air atmosphere does not interfere with the healing process nor it produces any degradation by oxidation, since the temperature remains low.

Скачать книгу