Self-Healing Smart Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Self-Healing Smart Materials - Группа авторов страница 20

Self-Healing Smart Materials - Группа авторов

Скачать книгу

1.15 (a) Pictures of the healing process of a PCL/PLA film containing Ag NWs: (1) as-prepared film; (2) cut film; (3) film being irradiated; (4) healed film being subjected to repeated bending. (b) Current changes in the nanocomposite film during a cutting/ healing process. (c, d) SEM images of a cut PCL/PLA/Ag NWs film, (c) before and (d) after being healed. Reproduced with permission from Ref. [145].

      This chapter is intended to show some of the multiple alternatives existing regarding the development of self-healing polymeric coatings, rather than being an exhaustive account of all those reported up to date. It is clear that the research field has advanced substantially since the synthesis of the first self-healing systems was published in the late 1970s and early 1980s. The number of scientific articles has escalated during the last decades, and also the number of patents filled for self-healing protective coatings and films has increased notoriously. However, commercially available products based on self-healing polymers are very scarce, probably due to some weaknesses that need to be addressed in the near future. Possibly the most important shortcoming of self-healing polymers is the need of maintaining the fracture surfaces in close contact to produce a good mending of the pieces. When these materials are used in real applications, this is an important aspect to which look after. Though it can be overcome (at least to a considerable extent) thanks to the localized indirect heating allowed by the presence of nanostructures [141, 142] or to the substrate that holds the two parts in place, it should be kept in mind that most tests on self-healing polymers are carried out in controlled environments, very different from those that the materials face during their usage.

      Finally, the formulations for self-healing coatings should be able to be processed by some of the methods currently used at industrial level, and not only at a laboratory scale without the need for expensive transformations or new technologies. Beside its use as coatings, some of the systems described herein can find very interesting applications on other areas. For instance, self-healing polymers based on DCBs are also very good candidates to be processed through 3D printing thanks to their moldable macroscopic structure offering them the possibility to flow [81, 103]. This is a challenging aspect that also needs to be addressed, and involves tuning the material rheological properties and the final mechanical and thermal performance. Overall, in view of the most recent advances on self-healing polymeric coatings, it seems that the next years this research field will continue growing steadily, and reach end-user applications in a near future.

       References

      1. Wool, R.P., Material response and reversible cracks in viscoelastic polymers. Polym. Eng. Sci., 18, 14, 1057–1061, 1978.

      2. Jud, K., Kausch, H.H., Williams, J.G., Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci., 16, 1, 204–210, 1981.

      4. Dry, C.M. and McMillan, W., Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers. Proc. SPIE 2718, Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, 448–451, 1996.

      5. Pascault, J.-P., Sautereau, H., Verdu, J., Williams, R.J.J., Thermosetting Polymers, Marcel Dekker, New York, 2002.

      6. Brazel, C.S. and Rosen, S.L., Fundamental principles of polymeric materials, Wiley, Hoboken, New Jersey, 2012.

      7. Francis, R. (Ed.), Recycling of Polymers: Methods, Characterization and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016.

      8. World Economic Forum’s Global Agenda Council on Emerging Technologies, The top 10 emerging technologies for 2013, https://www.weforum.org/agenda/2013/02/top-10-emerging-technologies-for-2013/, 2013.

      9. World Economic Forum’s Meta-Council on Emerging Technologies, The top 10 emerging technologies for 2015, https://www.weforum.org/agenda/2015/03/top-10-emerging-technologies-of-2015-2/, 2015.

      10. Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., White, S.R., Self-Healing Polymers and Composites. Annu. Rev. Mater. Res., 40, 1, 179–211, 2010.

      11. Billiet, S., Hillewaere, X.K.D., Teixeira, R.F.A., Du Prez, F.E., Chemistry of Crosslinking Processes for Self-Healing Polymers. Macromol. Rapid Commun.,

Скачать книгу