Introduction To Modern Planar Transmission Lines. Anand K. Verma

Чтение книги онлайн.

Читать онлайн книгу Introduction To Modern Planar Transmission Lines - Anand K. Verma страница 73

Introduction To Modern Planar Transmission Lines - Anand K. Verma

Скачать книгу

href="#fb3_img_img_ae2bd8ab-d08e-52e1-b828-42831298c5b9.png" alt="images"/> fields applied to such materials create both magnetization and electric polarization. The constitutive relation relating four flux and field vectors for a linear magneto‐electric medium is expressed as follows [B.21–B.23]:

      (4.2.15)equation

      (4.2.16)equation

      where ξ2/με is nearly unity. The magnetoelectric coupling parameters ξ and ζ have two components: the chirality parameter κ (kappa) and the cross‐coupling parameter χ (chi). The chirality parameter κ measures the degree of the handedness of the medium. The parameter χ is due to the cross‐coupling of fields. It decides the reciprocity (χ = 0) and nonreciprocity (χ ≠ 0) of the medium, giving the reciprocal and nonreciprocal material medium, respectively. In absence of cross‐coupling, i.e. χ = 0, the parameters ξ and ζ are reduced to imaginary quantities, and the bi‐isotropic medium is reduced to a nonchiral simple isotropic medium for κ = 0 and to a chiral medium for κ ≠ 0. It is also known as Pasteur medium. It supports the left‐hand and right‐hand circularly polarized waves as the normal modes of propagation. It is a reciprocal medium. For κ = 0, χ ≠ 0 another medium, called Tellengen medium, is obtained. It is a nonreciprocal medium. The general bi‐isotropic medium has χ ≠ 0, κ ≠ 0. It is a nonreciprocal medium.

      The gyrotropic medium and bianisotropic medium support left‐hand and right‐hand circularly polarized EM‐waves. However, there is a difference. The gyrotropic medium supports the Faraday rotation, i.e. rotation of linearly polarized wave while propagating in the medium, whereas bianisotropic medium does not support it [B.21].

      4.2.4 Nondispersive and Dispersive Medium

Schematic illustration of classification of bianisotropic and bi-isotropic materials.

      (4.2.17)equation

      Lorentz oscillator model of a dielectric material, discussed in section (6.5) of chapter 6, helps to understand the frequency‐dependent origin of the ε(ω). When an EM‐pulse, like a Gaussian pulse, passes through a dispersive medium, its pulse‐width widens due to the separation of different frequency components, as each frequency component travels at a different velocity in the dispersive medium. This is known as the pulse‐spreading phenomenon. It limits the speed of digital data transmission through the dispersive medium, as the digital bits can overlap each other. However, a dispersive medium can be nonlinear also, where the pulse spreading can be balanced by the nonlinearity. Under such combined dispersion, and nonlinearity, a pulse can propagate without changing its shape. Such robust EM‐waves are called the solitons. The solitons are useful in optical communication. However, the solitons have also been generated in the microwaves frequency range

      4.2.5 Non‐lossy and Lossy Medium

      All physical dielectric and magnetic material media have some amount of loss. Normally, the substrates used in the microwave planar technology do not have a high loss, except the doped semiconducting substrates. The lossy dielectrics are known as the imperfect dielectrics. The losses in the dielectric and magnetic materials change the relative permittivity and permeability into complex quantities:

      The imaginary parts of the relative permittivity and permeability are taken as negative quantities due to our choice of time‐harmonic function ejωt. However,

Скачать книгу