Functionalized Nanomaterials for Catalytic Application. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Functionalized Nanomaterials for Catalytic Application - Группа авторов страница 13

Functionalized Nanomaterials for Catalytic Application - Группа авторов

Скачать книгу

CBZ Carbamazepine OTC Oxytetracycline DFC Diclofenac NPX Naproxen PCM Paracetamol KP Ketoprofen CEL Cephalexin Pesticides: Pollutant ATZ Atrazine IMI Imidacloprid ATP Acetamiprid TMX Thiamethoxam ALA Alachor Consumer Products TCS Triclosan

      According to the key fact sheet (drinking water) of WHO-June 2019, 785 million people are devoid of essential drinking-water amenities [2]. Growing populace, demographic variations, climatic deviations, and environmental pollution are major contributors as challengers and reducers of water resource segments. Sufficient supplies of potable water can be derived by using proper management of effluent water from diversified sources [3]. With restrictions in traditional methods, sophisticated novel methods supply the requisites in an eco-friendly, cost-effective way to combat the toxic pollutants efficiently for remediations. The toxic contaminants dispensed by organics like dyes from textile and printing industries, hydrocarbons from petro-chemical sectors, polymeric plastics, inorganics like poisonous gases, heavy-metal toxins from mining and other source, and devasting microbial consortiums pollute water resources either directly or indirectly, leading to unavailability of clean H2O [4]. WHO with EPA (Environmental Protection Agency) is evaluating suitable measures for utilizing decentralized treatment models for acquiring consumable water from wastewater. Fortification of wastewater and clean-water management systems, from various biological or chemical intruders are crucial concerning factors [5].

      Recent momentums in nano-engineering and nano-sciences have stipulated unprecedented breakthrough in evolving cost-effective and environment friendly protocols for an adaptable water treatment solution [6]. Fabrication of innovative nanomaterials (NMs) with unique models and approaches delivers versatilities in overcoming the drawbacks installed in earlier protocols for a full-scale utilization in the environmental pitch. Metallic, carbonaceous, polymeric, zeolites, etc., are the various categories of natural/simple/complex/functionalized nanomaterials (FNMs) generally utilized for water management [7–9].

      Sometimes, nano-sized materials tend to accumulate, with variations in reaction condition, thereby reducing their remedial capacities [14, 15]. Protection of as-synthesized nano scaled material from chemical oxidation/reduction and toxicities delivered by them can be controlled by casing a suitable layer of organics/inorganics on their core surface by functionalization modules [16]. In the recent past, FNMs are of great demand for their assorted technological innovations and nano-engineering applications in comparison with the normal NMs, as they possess exceptional transitional characteristics [17–19].

      FNMs supported with nanocatalyst have been proven for their high selectivity and controlled sensitivity over the target samples in water management [20, 21]. Nano-adsorbents, nano-membranes, and nanocatalysts have been commendably employed for attacking and eliminating the pollutant from the resourceful water sectors either in surface or in sub-surface [22, 23]. Functionalized nanocatalysts like electrocatalyst (EC) [24], photocatalyst (PC) [25], electro-Fenton catalyst (EFC) [26], Fenton-based catalyst (F’bC) [27], and oxidants (chemical) by versatile processes have revealed their potentialities in getting rid of biological, organic and/or inorganic toxicants from water bodies, that might lead to painful health issues [28].

Schematic illustration of FMN-based nanocatalyst for water resources.

Скачать книгу