Functionalized Nanomaterials for Catalytic Application. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Functionalized Nanomaterials for Catalytic Application - Группа авторов страница 26

Functionalized Nanomaterials for Catalytic Application - Группа авторов

Скачать книгу

of phenolic organics. Environ. Sci. Technol., 52, 12, 7043–7053, 2018.

      106. Huang, S., Zhang, Q., Liu, P., Ma, S., Xie, B., Yang, K., Zhao, Y., Novel upconversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system. Appl. Catal. B: Environ., 263, 118336, 2020.

      107. Gonçalves, N.P.F., Minella, M., Fabbri, D., Calza, P., Malitesta, C., Mazzotta, E., Prevot, A.B., Humic acid coated magnetic particles as highly efficient heterogeneous photo-Fenton materials for wastewater treatments. Chem. Eng. J., 390, 124619, 2020.

      108. Du, D., Shi, W., Wang, L., Zhang, J., Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Appl. Catal. B: Environ., 200, 484–492, 2017.

      109. Li, L., Liang, M., Huang, J., Zhang, S., Liu, Y., Li, F., Fe and Cu co-doped graphitic carbon nitride as an eco-friendly photo-assisted catalyst for aniline degradation. Environ. Sci. Pollut. Res., 27, 29391–29407, 2020.

      110. Zhao, H., Qian, L., Lv, H., Wang, Y., Zhao, G., Introduction of a Fe3O4 core enhances the photocatalytic activity of MIL-100(Fe) with tunable shell thickness in the presence of H2O2. ChemCatChem, 7, 24, 4148–4155, 2015.

      111. Dresselhaus, M. and Thomas, I., Alternative energy technologies. Nature, 414, 332–337, 2001.

      112. Wang, F., Li, Q., Xu, D., Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater., 7, 23, 1–50, 2017.

      113. Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., Isa, M.H., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J. Ind. Eng. Chem., 26, 1–36, 2015.

      114. Dewangan, R., Hashmi, A., Asthana, A., Singh, A.K., Susan, M.A.B.H., Degradation of methylene blue and methyl violet using graphene oxide/NiO/β-cyclodextrin nanocomposites as photocatalyst. Int. J. Environ. An. Ch., 2020.

      115. Pichat, P., Self-cleaning materials based on solar photocatalysis, in: New and Future Developments in Catalysis Solar Photocatalysis, S.L. Suib (Ed.), pp. 167–190, Elsevier, Netherlands, Amsterdam, 2013.

      116. Darkwah, W.K. and Ao, Y., Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale Res. Lett., 13, 388, 2018.

      118. Guo, L., Jing, D., Liu, M., Chen, Y., Shen, S., Shi, J., Zhang, K., Functionalized nanostructures for enhanced photocatalytic performance under solar light. Beilstein J. Nanotechnol., 5, 994–1004, 2014.

      119. Gao, C., Low, J., Long, R., Kong, T., Zhu, J., Xiong, Y., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev., 120, 21, 12175–12216, 2020.

      120. Bora, L.V. and Mewada, R.K., Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew. Sust. Energ. Rev., 76, 1393–1421, 2017.

      121. Chen, Y. and Bai, X., A review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts, 10, 142, 2020.

      122. Wang, T., Nie, C., Ao, Z., Wang, S., An, T., Recent progress in g-C3N4 quantum dots: synthesis, properties and applications in photocatalytic degradation of organic pollutants. J. Mater. Chem. A, 8, 485–502, 2020.

      123. Xia, Y., Wang, J., Chen, R., Zhou, D., Xiang, L., A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application. Crystals, 6, 148, 2016.

      124. Jacinto, M.J., Ferreira, L.F., Silva, V.C., Magnetic materials for photocatalytic applications - a review. J. Sol-Gel Sci. Techn., 96, 1–14, 2020.

      125. Yang, K., Wang, J., Chen, X., Zhao, Q., Ghaffar, A., Chen, B., Application of graphene-based materials in water purification: from the nanoscale to specific devices. Environ. Sci.: Nano, 5, 1264–1297, 2018.

      126. Sadegh, H., Ali, G.A.M., Gupta, V.K., Makhlouf, A.S.H., Shahryari, G.R., Nadagouda, M.N., Sillanpa, M., Megie, E., The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem., 7, 1–14, 2017.

      127. Bagheri, S., Julkapli, N.M., Hamid, S.B.A., Functionalized activated carbon derived from biomass for photocatalysis applications perspective. Int. J. Photoenergy, 2015, 30, 2015.

      128. Mondal, K. and Sharma, A., Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC Adv., 6, 83589, 2016.

      129. Li, S., Yu, X., Zhang, G., Ma, Y., Yao, J., Keita, B., Louis, N., Zhao, H., Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible light photocatalytic activities. J. Mater. Chem., 21, 228, 2011.

      130. Xu, Y., Liu, J., Xie, M., Jing, L., Xu, H., She, X., Li, H., Xie, J., Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation. Chem. Eng. J., 357, 487–497, 2019.

      132. Shaban, M., Ashraf, A.M., Abukhadra, M.R., TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci. Rep., 8, 781, 2018.

      133. El-Sayed, B.A., Mohamed, W.A.A., Galal, H.R., El-Bary, H.M.A., Ahmed, M.A.M., Photocatalytic study of some synthesized MWCNTs/TiO2 nanocomposites used in the treatment of industrial hazard materials. Egypt. J. Pet., 28, 247–252, 2019.

      134. Chae, S.-R., Hotze, E.M., Wiesner, M.R. et al., Possible applications of fullerene nanomaterials in water treatment and reuse, in: Nanotechnology Applications for Clean Water (2nd Edition) Solutions for Improving Water Quality Micro and Nano Technologies, A. Street, R. Sustich, J. Duncan, N. Savage (Eds.), pp. 329–338, Elsevier, William Andrew, Norwich, NY, 2014.

      135. Albiter, E., Barrera-Andrade, J.M., Rojas-García, E., Valenzuela, M.A., Recent advances of nanocarbon-inorganic hybrids in photocatalysis, in: Nanocarbon and its Composites Preparation, Properties and Applications, A. Khan, M. Jawaid, Dr. Inamuddin, A.M.A. Asiri (Eds.), pp. 521–588, Woodhead Publishing, Elsevier, United Kingdom, 2019.

      136. Regulska, E., Rivera-Nazario, D.M., Karpinska, J., Plonska-Brzezinska, M.E., Echegoyen, L., Zinc porphyrin-functionalized fullerenes for the sensitization of titania as a visible-light active photocatalyst: riverwaters and wastewaters remediation. Molecules, 24, 1118, 2019.

      137. Chai, B., Liao, X., Song, F., Zhou, H., Fullerene modified C3N4 composites with enhanced photocatalytic activity under visible light irradiation. Dalton Trans., 43, 982–989, 2014.

      138.

Скачать книгу