Functionalized Nanomaterials for Catalytic Application. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Functionalized Nanomaterials for Catalytic Application - Группа авторов страница 23
16. Haque, F., Daeneke, T., Kalantar-zadeh, K., Ou, J.Z., Two-Dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett., 10, 2, 23, 2018.
17. Rani, M., Shanker, U. et al., Remediation of organic pollutants by potential functionalized nanomaterials, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 327–398, Elsevier, Netherlands, Amsterdam, 2020.
18. Parvin, F., Rikta, S.Y., Shafi, M., Tareq, S.M., Application of nanomaterials for the removal of heavy metal from wastewater, in: Nanotechnology in Water and Wastewater Treatment: Theory and Applications, A. Ahsan and A.F. Ismail (Eds.), pp. 137–157, Elsevier, Netherlands, Amsterdam, 2019.
19. Liu, J., Feng, X., Fryxell, G.E., Wang, L.-Q., Kim, A.Y., Gong, M., Hybrid mesoporous materials with functionalized monolayers. Chem. Eng. Technol., 21, 1, 97–100, 1998.
20. Darwish, M., Mohammadi, A. et al., Functionalized nanomaterial for environmental techniques, in: Nanotechnology in Environmental Science, C.M. Hussain and A.K. Mishra (Eds.), pp. 315–349, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (Germany), 2018.
21. Chong, W.-C., Ko, C.-H., Lau, W.-J. et al., Mixed-matrix membranes incorporated with functionalized nanomaterials for water applications, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 15–51, Elsevier, Netherlands, Amsterdam, 2020.
22. Olatunde, O.C., Onwudiwe, D.C. et al., Copper-based ternary metal sulfide nanocrystals embedded in graphene oxide as photocatalyst in water treatment, in: Nanotechnology in the Beverage Industry: Fundamentals and Applications, A. Amrane, S. Rajendran, T.A. Nguyen, A.A. Assadi, A. Sharoba (Eds.), pp. 51–133, Elsevier, Netherlands, Amsterdam, 2020.
23. Nnaji, C.O., Jeevanandam, J., Chan, Y.S., Danquah, M.K., Pan, S., Barhoum, A. et al., Engineered nanomaterials for wastewater treatment: current and future trends, in: Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization, A.S.H. Makhlouf and A. Barhoum (Eds.), pp. 129–168, Elsevier, Netherlands, Amsterdam, 2018.
24. Riaz, R., Ali, M., Maiyalagan, T., Arbab, A.A., Anjum, A.S., Lee, S., Ko, M.J., Jeong, S.H., Activated charcoal and reduced graphene sheets composite structure for highly electrocatalytically active counter electrode material and water treatment. Int. J. Hydrogen Energ., 45, 13, 7751–7763, 2020.
25. Liu, G., Wang, S., Gondal, M.A., Shen, K., Xu, Q., Enhanced visible light photocatalytic performance of G-C3N4 photocatalysts Co-doped with gold and sulfur for degradation of persistent pollutant (Rhodamine B). J. Nanosci. Nanotechnol., 19, 2, 713–720, 2019.
26. Feng, Y., Yang, L., Liu, J., Logan, B., Electrochemical technologies for waste-water treatment and resource reclamation. Environ. Sci.: Water Res. Technol., 2, 800–831, 2016.
27. Pouran, S.R., Raman, A.A.A., Daud, W.M.A.W., Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod., 64, 24–35, 2014.
28. Zhang, X., Li, Z., Deng, Z., Pan, B. et al., Porous nanocomposites for water treatment: past, present, and future, in: Handbook of Functionalized Nanomaterials for Industrial Applications, C.M. Hussain (Ed.), pp. 479–503, Elsevier, Netherlands, Amsterdam, 2020.
29. Xiao, J., Xie, Y., Cao, H., Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 121, 1–17, 2015.
30. Nazarabad, M.K., Goharshadi, E.K., Mahdizadeh, S.J., Efficient photoelectrocatalytic water oxidation by palladium doped g-C3N4 electrodeposited thin film. J. Phys. Chem. C., 123, 43, 26106–26115, 2019.
31. Lin, Y., Cao, Y., Yao, Q., Chai, O.J.H., Xie, J., Engineering noble metal nanomaterials for pollutant decomposition. Ind. Eng. Chem. Res., 59, 47, 20561–20581, 2020.
32. Divyapriya, G. and Nidheesh, P.N., Importance of graphene in the electro-Fenton process. ACS Omega, 5, 10, 4725–4732, 2020.
33. Chen, Z., Liu, Y., Wei, W., Ni, B.-J., Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci.: Nano, 6, 2332– 2366, 2019.
34. Mishra, D., Srivastava, M. et al., Low-dimensional nanomaterials for the photocatalytic degradation of organic pollutants, in: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities, Singh, P., Borthakur, A., Mishra, P.K., Tiwary, D. (Eds.), pp. 15–38, Elsevier, Netherlands, Amsterdam, 2020.
35. Chaturvedi, S., Pragnesh N. Dave, P.N., Shah, N.K., Applications of nanocatalyst in new era. J. Saud. Chem. Soc., 16, 3, 307–325, 2012.
36. Salgado, J.R.C., Duarte, R.G., Ilharco, L.M., Rego, A.M.B., Ferraria, A.M., Ferreira, M.G.S., Effect of functionalized carbon as Pt electrocatalyst support on the methanol oxidation reaction. Appl. Catal. B. Environ., 102, 496–504, 2011.
37. Ren, X., Qianyuan Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., Wu, G., Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels, 4, 15–30, 2020.
38. Sui, S., Wang, X., Zhou, X., Su, Y., Riffat, S., Liu, C-j., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A, 5, 1808–1825, 2017.
39. Qu, R., Liu, N., Chen, Y., Zhang, W., Zhang, Q., Liu, Y., Feng, L., A MoS2 nanosheet-coated mesh for pH-induced multi-pollutant water remediation with in situ electrocatalysis. J. Mater. Chem. A., 6, 6435–6441, 2018.
40. Wang, X., Xie, Y., Yang, G., Hao, J., Ma, J., Ning, P., Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach. Front. Environ. Sci. Eng., 14, 22, 2020.
41. Qiu, L., Peng, Y., Liu, B., Lin, B., Peng, Y., Malik, M.J., Yan, F., Polypyrrole nanotube-supported gold nanoparticles: an efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Appl. Catal. A: Gen., 413–414, 230–237, 2012.
42. Yang, Y., Wang, H., Li, J., He, B., Wang, T., Liao, S., Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ. Sci. Technol., 46, 12, 6815–6821, 2012.
43. Bankole, M.Y., Abdulkareem, A.S., Mohammed, I.A., Ochigbo, S.S., Tijani, J.O., Abubakre, O.K., Roos, W.D., Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci. Rep., 9, 4475, 2019.
44. Chen, Y., Li, H., Li, W., Tu, Y., Zhang, Y., Han, W., Wang, L., Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2- NTs/SnO2-Sb/PbO2 electrode. Chemosphere, 113, 48–55, 2014.
45. Yu, L., Chen, Y., Han, W., Sun, X., Li, J., Wang, L., Preparation of porous TiO2-NTs/m-SnO2-Sb electrode for electrochemical degradation of benzoic acid. RSC Adv., 6, 19848–19856, 2016.
46. Cui, C., Wu, J., Xin, Y., Han, Y., Highly stable palladium-loaded TiO2 nanotube array electrode for the electrocatalytic hydrodehalogenation