Transporters and Drug-Metabolizing Enzymes in Drug Toxicity. Albert P. Li

Чтение книги онлайн.

Читать онлайн книгу Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li страница 18

Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li

Скачать книгу

CYP3A4 expression is also affected by the trans genetic variations. Polymorphisms in CYP3A4 regulators, including FoxA2/A3, HNF4a, PXR, and MDR1, have been suggested to explain ~24% of the interindividual variability in hepatic CYP3A4 expression [66]. Although CYP3A4 is the most abundant CYP in the liver and catalyzes the oxidation of a broad spectrum of drugs, little association has been established so far between CYP3A4 polymorphisms and DILI [6].

      2.5.2 CYP3A5

      CYP3A5 expression is highly polymorphic. The most common loss‐of‐function variant is CYP3A5*3, which harbors a 6986A>G mutation in the third intron [67]. This causes aberrant alternative splicing and a premature stop in protein translation. The resulting truncated protein is defective in enzymatic function. CYP3A5 genotype‐based dosing has been suggested for the immunosuppressant tacrolimus, used in patients who received kidney [68, 69]. The therapeutic index of tacrolimus is narrow, and adverse reactions such as nephrotoxicity, hypertension, and diabetes can occur at concentrations slightly above or within the therapeutic range [70]. Therefore, therapeutic drug monitoring and dose adjustment of tacrolimus are clinically important. CYP3A5*3 reportedly is associated with lower tacrolimus clearance, and poor metabolizer patients with CYP3A5*3 require lower doses to achieve target concentrations [71]. In a cohort study, 39% of the variability in the blood concentration‐to‐dose ratio of tacrolimus could be explained by CYP3A5*3 alone [72]. Whether CYP3A5 genotype‐based dosing is beneficial to kidney transplant recipients requires further investigation; however, it is considered an option in clinical practice.

      2.5.3 CYP2D6

      2.5.4 CYP2C9

      Genetic variation in CYP2C9 has been recognized as a host factor for adverse drug reactions because many of the CYP2C9 substrates have a narrow therapeutic index [41]. The most studied variants are CYP2C9*2 (3608C>T, R144C) and CYP2C9*3 (42614A>C, I359L), both of which have decreased enzyme activity. They are more prevalent in Caucasians than in Asians and Africans [82]. The most investigated case for CYP2C9 pharmacogenetics involves the vitamin K antagonist warfarin. Although warfarin contains both R‐ and S‐enantiomers, the S‐enantiomer is three to five times more effective in anticoagulation than the R‐enantiomer [83]. S‐warfarin metabolism is highly dependent on CYP2C9. Both CYP2C9*2 and CYP2C9*3 carriers have decreased warfarin biotransformation and thus could be considered for dose adjustment, especially when genetic variation in VKORC1 (vitamin K epoxide reductase, complex I) is also present [84, 85]. CYP2C9 polymorphism also affects the metabolism of some NSAIDs, such as diclofenac and ibuprofen. A potential pharmacogenetic association of CYP2C9 with diclofenac hepatotoxicity was proposed [86], but was negated by pharmacokinetics studies [87, 88]. CYP2C9*2 has been reported to be associated with bosentan‐related DILI, as the metabolism of bosentan is substantially reduced in CYP2C9*2 carriers [49, 50]. CYP2C9*3 was implicated to hepatotoxicity of leflunomide in a single case [89].

      2.5.5 CYP2C19

      2.5.6 CYP2B6

      The most common variant is CYP2B6*6, which harbors two SNP mutations (15631G>T and 18053A>G), causing two amino acid substitutions (Q172H and K262R). CYP2B6*6 is prevalent in different populations with variable frequency [96]. CYP2B6 has been suggested to have clinical implications in HIV therapy [97]. The antiretroviral medication efavirenz is metabolized by CYP2B6. Patients with CYP2B6*6 have decreased CYP2B6 activity and are associated with high plasma levels of efavirenz, which could increase the risk of central neuron system adverse events [92] and hepatic adverse events [48]. CYP2B6*1H and *1J are associated with ticlopidine hepatotoxicity in Japanese populations, possibly due to increased CYP2B6 expression [47].

      2.5.7 UGT1A1

      Ten of the UGT1A isoforms (1–10) are encoded by the UGT1A gene locus [98]. Currently 113 UGT1A1 variants have been cataloged by the UGT nomenclature committee. The clinically‐relevant variant UGT1A1*28 has an extra TA pair inserted into the (TA)6 repeats in the TATA box [99]. This disrupts the transcriptional regulation of UGT1A1, and thus reduces protein expression. UGT1A1*28 carriers exhibit impaired glucuronidation of lipophilic molecules, including bilirubin, resulting in decreased bilirubin clearance (Gilbert’s syndrome) [98, 100].). It has been associated with the toxicity of the anticancer drug irinotecan [101]. Irinotecan is a prodrug that undergoes bioactivation into active metabolite SN‐38, followed by inactivation by glucuronidation. The therapeutic window of irinotecan is rather small. Patients with UGT1A1*28 alleles could be at increased risk of adverse drug reactions due to its less effective clearance. Some SNPs in the UGT1A locus (e.g. C908G in the 3′‐UTR region) have been reported to be associated with the hepatic toxicity of tolcapone, all of which were in significant linkage disequilibrium with the silent mutation UGT1A6‐A528G [54].

      2.5.8 NAT2

Скачать книгу