Transporters and Drug-Metabolizing Enzymes in Drug Toxicity. Albert P. Li

Чтение книги онлайн.

Читать онлайн книгу Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li страница 20

Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li

Скачать книгу

Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, et al. Combination of GSH trapping and time‐dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites. Drug Metabolism and Disposition 2011; 39(7): 1247–54.

      22 22 Zaïr ZM, Eloranta JJ, Stieger B, Kullak‐Ublick GA. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics, 2008, 9(5):597–624.

      23 23 Dong AN, Tan BH, Pan Y, Ong CE. Cytochrome P 450 genotype‐guided drug therapies: an update on current states. Clinical and Experimental Pharmacology and Physiology 2018; 45 (10): 991–1001.

      24 24 Khurana V, Minocha M, Pal D, Mitra AK. Inhibition of OATP‐1B1 and OATP‐1B3 by tyrosine kinase inhibitors. Drug Metabolism and Drug Interactions 2014; 29(4): 249–59.

      25 25 Campbell SD, de Morais SM, Xu JJ. Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug‐induced hyperbilirubinemia. Chemico‐Biological Interactions 2004; 150(2): 179–87.

      26 26 Chiou WJ, de Morais SM, Kikuchi R, Voorman RL, Li X, Bow DA. in vitro OATP1B1 and OATP1B3 inhibition is associated with observations of benign clinical unconjugated hyperbilirubinemia. Xenobiotica 2014; 44(3): 276–82.

      27 27van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. The Journal of Clinical Investigation 2012; 122(2): 519–28.

      28 28 Denk GU, Soroka CJ, Takeyama Y, Chen W‐S, Schuetz JD, Boyer JL. Multidrug resistance‐associated protein 4 is up‐regulated in liver but down‐regulated in kidney in obstructive cholestasis in the rat. Journal of Hepatology 2004; 40(4): 585–91.

      29 29 Borst P, de Wolf C, van de Wetering K. Multidrug resistance‐associated proteins 3, 4, and 5. Pflügers Archiv‐European Journal of Physiology 2007; 453(5): 661–73.

      30 30 Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C, Koster J, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2015; 61(1): 260–7.

      31 31 Davit‐Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet Journal of Rare Diseases 2009; 4(1): 1.

      32 32 Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, et al. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin–Johnson syndrome. Hepatology 1997; 25(6): 1539–42.

      33 33 Mahdi ZM, Synal‐Hermanns U, Yoker A, Locher KP, Stieger B. Role of multidrug resistance protein 3 in antifungal‐induced cholestasis. Molecular Pharmacology 2016; 90(1): 23–34.

      34 34 Dawson S, Stahl S, Paul N, Barber J, Kenna JG. in vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug‐induced liver injury in humans. Drug Metabolism and Disposition 2012; 40(1): 130–8.

      35 35 Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clinical Pharmacology & Therapeutics 2001; 69(4): 223–31.

      36 36 Kis E, Ioja E, Rajnai Z, Jani M, Méhn D, Herédi‐Szabó K, et al. BSEP inhibition–in vitro screens to assess cholestatic potential of drugs. Toxicology in vitro 2012; 26(8): 1294–9.

      37 37 Chan R, Benet LZ. Measures of BSEP inhibition in vitro are not useful predictors of DILI. Toxicological Sciences 2017; 162(2): 499–508.

      38 38 Watkins PB. The DILI‐sim initiative: insights into hepatotoxicity mechanisms and biomarker interpretation. Clinical and Translational Science 2019; 12(2): 122–9.

      39 39 Guo YX, Xu XF, Zhang QZ, Li C, Deng Y, Jiang P, et al. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin‐induced hepatotoxicity. Toxicology Mechanisms and Methods 2015; 25(5): 382–7.

      40 40 Feng B, Xu JJ, Bi Y‐A, Mireles R, Davidson R, Duignan DB, et al. Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP‐724, 714. Toxicological Sciences 2009; 108(2): 492–500.

      41 41 Klein K, Zanger UM. Pharmacogenomics of cytochrome P450 3A4: recent progress toward the "missing heritability" problem. Frontiers in Genetics 2013; 4: 12.

      42 42 Amacher DE. The primary role of hepatic metabolism in idiosyncratic drug‐induced liver injury. Expert Opinion on Drug Metabolism & Toxicology 2012; 8(3): 335–47.

      43 43 Madian AG, Wheeler HE, Jones RB, Dolan ME. Relating human genetic variation to variation in drug responses. Trends in Genetics: TIG 2012; 28 (10): 487–95.

      44 44 Pachkoria K, Lucena MI, Molokhia M, Cueto R, Carballo AS, Carvajal A, et al. Genetic and molecular factors in drug‐induced liver injury: a review. Current Drug Safety 2007; 2(2): 97–112.

      45 45 FDA TU. Table of Pharmacogenetic Associations; 2020. Available from: https://www.fda.gov/medical‐devices/precision‐medicine/table‐pharmacogenetic‐associations?utm_campaign=2020‐02‐20%20Pharmacogenetic%20Associations%3A%20Scientific%20Evidence%20Underlying%20Gene‐Drug%20Interactions&utm_medium=email&utm_source=Eloqua.

      46 46 Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, et al. Incidence of drug‐induced hepatic injuries: a French population‐based study. Hepatology (Baltimore, MD) 2002; 36(2): 451–5.

      47 47 Ariyoshi N, Iga Y, Hirata K, Sato Y, Miura G, Ishii I, et al. Enhanced susceptibility of HLA‐mediated ticlopidine‐induced idiosyncratic hepatotoxicity by CYP2B6 polymorphism in Japanese. Drug Metabolism and Pharmacokinetics 2010; 25(3): 298–306.

      48 48 Yimer G, Amogne W, Habtewold A, Makonnen E, Ueda N, Suda A, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz‐based HAART‐induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study. The Pharmacogenomics Journal 2012; 12(6): 499–506.

      49 49 Markova SM, De Marco T, Bendjilali N, Kobashigawa EA, Mefford J, Sodhi J, et al. Association of CYP2C9*2 with bosentan‐induced liver injury. Clinical Pharmacology & Therapeutics 2013; 94(6): 678–86.

      50 50 Seyfarth H‐J, Favreau N, Tennert C, Ruffert C, Halank M, Wirtz H, et al. Genetic susceptibility to hepatoxicity due to bosentan treatment in pulmonary hypertension. Annals of Hepatology 2014; 13(6): 803–9.

      51 51 Lee, SW, Chung, L, Huang, HH, Chuang, TY, Liou, YH, and Wu, L. NAT2 and CYP2E1 polymorphisms and susceptibility to first‐line anti‐tuberculosis drug‐induced hepatitis. The International Journal of Tuberculosis and Lung Disease 2010; 14: 622–626.

      52 52 Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid‐induced liver injury and early treatment failure in the 6‐month four‐drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics‐based therapy. European Journal of Clinical Pharmacology 2013; 69(5): 1091–101.

      53 53 Cho H‐J, Koh W‐J, Ryu Y‐J, Ki C‐S, Nam M‐H,

Скачать книгу