Phil's Physics. Philip Häusser

Чтение книги онлайн.

Читать онлайн книгу Phil's Physics - Philip Häusser страница 5

Phil's Physics - Philip Häusser

Скачать книгу

euer Elektroskop fertig ist, solltet ihr es unbedingt gleich ausprobieren! Ein Elektroskop misst elektrische Ladung. Woher bekommt man elektrische Ladung? Ganz einfach: Sie ist überall. Besorgt euch ein Stück Plastik (CD-Hülle, Gummi-Schuhsohle, Plastiklöffel, …) und reibt es über einen Wollteppich oder etwas anderes aus möglichst zotteligem Stoff. Besonders gut funktioniert es mit einem aufgeblasenen Luftballon. Reibt damit an euren Haaren (sorry, Gel-Igelfrisur-Fans – ihr müsst vorher die Haare waschen und trocknen). Ihr könnt stattdessen auch den Luftballon an einem Teppich(boden) reiben. Berührt danach die Alu-Kugel mit dem Plastik und beobachtet die beiden Flügel. Wenn alles funktioniert, werdet ihr sehen: Die Flügel schwingen auseinander! Allein durch die Kraft der Ladung.

      SO FUNKTIONIERT ES

      Wenn ihr zwei verschiedene Stoffe aneinander reibt, passiert etwas, das Physiker Ladungstrennung nennen. Die negativen und positiven Ladungsträger trennen sich, dadurch lädt sich der eine Stoff positiv, der andere negativ auf. Wenn ihr dann mit einem der beiden die Alu-Kugel berührt, wird die Kugel entsprechend negativ oder positiv geladen. Da die Kugel über den Draht auch mit den beiden Flügeln im Glas verbunden ist, sind diese ebenfalls positiv oder negativ geladen. Und jetzt kommt ein weiteres physikalisches Prinzip zum Tragen, das ihr vielleicht schon mal gehört habt: Gleichnamige Ladungen stoßen sich ab. Auf den beiden Flügeln ist ja entweder ein Überschuss von Elektronen (wenn sie negativ geladen sind) oder ein Mangel an Elektronen (wenn sie positiv geladen sind). Da das bei beiden Flügeln der Fall ist, sind sie nicht mehr elektrisch neutral und die Ladungen, die auf den Flügeln sitzen, stoßen sich ab.

      Wenn ihr jetzt mit eurer Hand oder einem großen metallischen Gegenstand wieder die Kugel berührt, können sich die Ladungen ausgleichen und die Flügel schwingen zurück.

      WAS KANN ALLES SCHIEF GEHEN?

      Wenn sich in eurem Elektroskop nix tut, kann das zum Beispiel daran liegen, dass die Flügel zu schwergängig aufgehängt sind. Sie sollten baumeln, wenn ihr das Glas leicht kippt. Falls das nicht der Fall ist, vergrößert das Loch an den Flügeln ein bisschen.

      Die Hauptaufgabe eines Elektroskops ist es ja, elektrische Ladungen anzuzeigen. Wenn ihr keine elektrischen Ladungen auf die Kugel bringt, kann logischerweise auch nichts angezeigt werden. Versucht also, die Ladungstrennung mit verschiedenen Stoffen zu erreichen: Probiert ein anderes Plastik (ein Plastikstab wäre ideal) und andere Wollstoffe. Im schlimmsten Fall müsst ihr mit Plastik-Schlappern über den Teppich schlurfen. Ein kleiner Test, ob es funktioniert: Haltet das Plastik-Objekt (Schuh, CD-Hülle, Stab) an eine Türklinke. Wenn es einen kleinen Funken gibt, funktioniert diese Methode. Leider müsst ihr dann aber nochmal ran, denn der Funke war der Ladungsausgleich – danach müsst ihr erneut für Ladungstrennung sorgen.

      Stellt euch vor, ihr seid auf einer Camping-Tour. Langsam wird es dunkel und bevor die Nacht hereinbricht, wollt ihr dringend – wie so üblich beim Camping – eine Dose Ravi-oli aufwärmen. Doch verdammt: Die Streichhölzer im Rucksack sind nass geworden! Woher bekommt ihr jetzt in der weiten Wildnis Feuer?

      Zum Glück seid ihr erfinderisch (und Besitzer dieses Buches)! Denn alles, was ein Physiker braucht, um Feuer zu machen, ist die Batterie aus der Taschenlampe und das Papier von einem Kaugummi!

      SO WIRD’S GEMACHT

      Dieses Experiment führt ihr am besten draußen oder auf einer feuerfesten Unterlage durch. Schneidet mit der Schere vom Kaugummipapier einen langen dünnen Streifen ab. Er sollte etwa 5 mm breit sein.

      Faltet den Streifen in der Mitte und schneidet das gefaltete Ende schräg ein, ohne aber den Streifen zu durchtrennen. Wenn ihr den Streifen aufklappt, sollte die Stelle in der Mitte recht schmal sein. Experimentiert mit verschiedenen Größen der »Engstelle«: Schneidet den zusammen geklappten Streifen mal etwas mehr oder weniger spitz zu und probiert aus, welche »Schmalheit« am besten klappt.

      Diesen Streifen verbindet ihr jetzt mit den beiden Enden der Batterie. Achtet darauf, dass die metallische Seite an den Kontakten anliegt. Nach ein paar Sekunden fängt das Papier in der Mitte Feuer. Nicht lange – aber lang genug, um damit ein kleines Stück Holz, eine Kerze oder einen Gaskocher zu entzünden.

      Wenn ihr das Experiment ein paarmal versucht habt, wird die Spannung in der Batterie schon deutlich abgefallen sein. Es kann sein, dass ihr dann eine neue Batterie für diesen Versuch braucht.

      SO FUNKTIONIERT ES

      Sobald ihr den metallischen Streifen an die Batterie haltet, beginnt ein elektrischer Strom zu fließen. Denn Metall leitet elektrischen Strom. Das bedeutet, Elektronen wandern vom einen Ende der Batterie zum anderen. Die Spannung der Batterie treibt sie dazu an. Aber auf dem Weg durch den Metallstreifen haben die Elektronen es mit allerlei Hindernissen zu tun. Sie treffen auf Teilchen im Metall und versetzen diese wiederum in Bewegung. Dadurch wärmt sich das Metall auf.

      Bei den meisten Stromleitern, wie zum Beispiel Kabeln, ist das Metall so dick, dass der Elektronenstrom keine dramatische Hitze erzeugt. In unserem Fall ist das Metall auf dem Kaugummipapier aber hauchdünn. Das bedeutet, dass der Widerstand für den Strom sehr groß ist – er muss sich richtig durchkämpfen. So, als ob ein Wasserstrom durch eine enge Stelle in einem Fluss fließt. Dort ist auch der Widerstand größer.

      Wir haben sogar extra noch einen Engpass eingebaut, nämlich die Stelle in der Mitte. Hier knallen also jede Menge Teilchen aufeinander und erzeugen so Hitze. Da die Stelle in der Mitte so eng ist, kommt genug Luft aus der Umgebung an das heiße Metall, sodass spontan eine Flamme entsteht. Das Papier fängt Feuer und fertig ist der Anzünder.

      WIE GEFÄHRLICH IST STROM AUS DER BATTERIE?

      Dieses Experiment ist natürlich nicht ganz ungefährlich. Zum einen, weil Feuer entsteht und zum anderen, weil wir es hier mit elektrischem Strom zu tun haben. Wenn man eine handelsübliche Batterie anfasst, zum Beispiel aus einer Taschenlampe oder Fernbedienung, besteht eigentlich keine Gefahr. Denn die Spannung ist hier zu gering, um eine riskante Stromstärke zu erzeugen. Moment mal … Spannung? Stromstärke? Was ist das eigentlich?

      Ganz einfach kann man »Strom« verstehen, wenn man sich das Ganze wie in einem großen Schwimmbad vorstellt. Okay – ein Physik-taugliches Schwimmbad.

      Stellt euch einen Wasserbehälter vor, an dessen Unterseite ein Rohr zum Boden führt. Das, was gleich fließen soll, sind Wassermoleküle. Bei einer Batterie sollen Ladungsträger fließen, die Elektronen.

      Je mehr Wasser im Behälter ist und je höher dieser hängt, desto gewaltiger will das Wasser unten heraussprudeln. Diese »Gewalt« entspricht der Spannung in einem Stromkreislauf. Die Spannung treibt einen Strom an.

      Wenn man jetzt den Hahn aufdreht und das Wasser fließen lässt, dann strömt in einer Sekunde eine gewisse Menge Wasser heraus. Der Wasserstrom hat also eine bestimmte Stärke. Übertragen auf den Stromkreislauf bedeutet Stromstärke,

Скачать книгу