Biomedical Data Mining for Information Retrieval. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomedical Data Mining for Information Retrieval - Группа авторов страница 24
Machine learning has revolutionized the field of biology and medicine where researchers have employed machine learning to make gene chips more practical and useful. Data that might have taken years to collect, now takes a week. Biologist are aided greatly by the supervised and unsupervised learning methods that many are using to make sense of the large amount of data now available to them. As a result a rapid increase has occurred in the rate at which biologists are able to understand the molecular processes that underlie and govern the function of biological systems which can be used for a variety of important medical applications such as diagnosis, prognosis, and drug response. As our vast amount of genomic and similar types of data continues to grow, the role of computational techniques, especially machine learning, will grow with it. These algorithms will enable us to handle the task of analyzing this data to yield valuable insight into the biological systems that surround us and the diseases that affect us.
References
1. Lancet, T., Artificial intelligence in healthcare: Within touching distance. Lancet, 390, 10114, 2739, 2018.
2. Kantarjian, H. and Yu, P.P., Artificial Intelligence, Big Data, and Cancer. JAMA Oncol., 1, 5, 573–574, 2015.
3. Topol, E.J., High-performance medicine: The convergence of human and artificial intelligence. Nat. Med., 25, 1, 44–56, 2019.
4. Kanasi, E., Ayilavarapu, S., Jone, J., The aging population: Demographics and the biology of aging. Periodontol. 2000, 72, 1, 13–18, 2016.
5. Naughton, M.J., Brunner, R.L., Hogan, P.E., Danhauer, S.C., Brenes, G.A., Bowen, D.J. et al., Global quality of life among WHI women aged 80 years and older. J. Gerontol. A Biol. Sci. Med. Sci., 71 Suppl. 1, S72–8, 2016.
6. Cohen, C., Kampel, T., Verloo, H., Acceptability among community health-care nurses of intelligent wireless sensor-system technology for the rapid detection of health issues in home-dwelling older adults. Open Nurs. J., 11, 54–63, 2017.
7. Labovitz, D.L., Shafner, L., Reyes, G.M., Virmani, D., Hanina, A., Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. Stroke, 48, 5, 1416–1419, 2017.
8. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K. et al., Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface, 15, 141, pii:20170387, 2018.
9. Goh, G.B., Hodas, N.O., Vishnu, A., Deep learning for computational chemistry. J. Comput. Chem., 38, 16, 1291–1307, 2017.
10. Ramsundar, B., Liu, B., Wu, Z. et al., Is multi task deep learning practical for pharma? J. Chem. Inf. Model., 57, 8, 2068–2076, 2017.
11. So, H.C. and Sham, P.C., Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci. Rep., 7, 41262, 2017.
12. English, A.C., Salerno, W.J., Hampton, O.A., GonzagaJauregui, C., Ambreth, S., Ritter, D.I., Beck, C.R., Davis, C.F., Dahdouli, M., Ma, S. et al., Assessing structural variation in a personal genome—Towards a human reference diploid genome. BMC Genomics, 16, 286, 2015.
13. Angermueller, C., Parnamaa, T., Parts, L., Stegle, O., Deep learning for computational biology. Mol. Syst. Biol., 12, 878, 2016.
14. Meuwissen, T. and Goddard, M., Accurate Prediction of Genetic Values for Complex Traits by Whole-Genome Resequencing. Genetics, 185, 623–631, 2010.
15. Pérez-Enciso, M., Rincón, J.C., Legarra, A., Sequence- vs. chip-assisted genomic selection: Accurate Biological information is advised. Genet. Sel. Evol., 47, 1–14, 2015.
16. Heidaritabar, M., Calus, M.P.L., Megens, H.-J., Vereijken, A., Groenen, M.A.M., Bastiaansen, J.W.M., Accuracy of genomic prediction using imputed whole-genome sequence data in white layers. J. Anim. Breed. Genet., 133, 167–179, 2016.
17. Ainscough, B.J., Barnell, E.K., Ronning, P., Campbell, K.M., Wagner, A.H., Fehniger, T.A., Dunn, G.P., Uppaluri, R., Govindan, R., Rohan, T.E. et al., A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data. Nat. Genet., 50, 1735–1743, 2018.
18. Sundaram, L., Gao, H., Padigepati, S.R., McRae, J.F., Li, Y., Kosmicki, J.A., Fritzilas, N., Hakenberg, J., Dutta, A., Shon, J. et al., Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet., 50, 1161–1170, 2018.
19. Zhou, J., Theesfeld, C.L., Yao, K., Chen, K.M., Wong, A.K., Troyanskaya, O.G., Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet., 50, 1171–1179, 2018.
20. Torkamani, A., Andersen, K.G., Steinhubl, S.R., Topol., E.J., High-definition medicine. Cell, 170, 828–4, 2017.
21. Este va, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K. et al., A guide to deep learning in healthcare. Nat. Med., 25, 24–9, 2019.
22. Fraser, K.C., Meltzer, J.A., Rudzicz, F., Linguistic features identify Alzheimer’s disease in narrative speech. J. Alzheimers Dis., 49, 407–22, 2016.
23. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Liu, P.J. et al., Scalable and accurate deep learning for electronic health records. NPJ Digit. Med., 1, 18, 2018, https://doi.org/10.1038/s41746-018-0029-1.
24. Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., Telenti, A., A primer on deep learning in genomics. Nat. Genet., 51, 12–8, 2019.
25. Eraslan, G., Avsec, Ž., Gagneur, J., Theis, F.J., Deep learning: New computational modelling techniques for genomics. Nat. Rev. Genet., 20, 389–403, 2019.
26. Yang, J., Cao, R., Si, D., EMNets: A Convolutional Autoencoder is made available under a CC-BY-NC-ND 4.0 International license. bioRxiv, preprint, 2018, https://doi.org/10.1101/561027. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It for Protein Surface Retrieval Based on Cryo-Electron Microscopy Imaging,” in Proceedings of the ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics—BCB ‘18, Washington, DC, USA, pp. 639–644.
27. Ng, A. and Si, D., Beta-Barrel Detection for Medium Resolution CryoElectron Microscopy Density Maps Using Genetic Algorithms and Ray Tracing. J. Comput. Biol., 25, 6, 326–336, 2018.
28. Li, R., Si, D., Zeng, T., Ji, S., He, J., Deep Convolutional Neural Networks for Detecting Secondary Structures in Protein Density Maps from Cryo-Electron Microscopy. Proceedings, pp. 41–46, 2016.
29. Si, D., Ji, S., Nasr, K.A., He, J., A machine learning approach