Emergency Medical Services. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Emergency Medical Services - Группа авторов страница 73

Emergency Medical Services - Группа авторов

Скачать книгу

EMS clinician must be prepared for a difficult airway situation (see Chapter 3). Unless the tracheotomy was concomitant with laryngectomy, the patient may be intubated orally. He or she can also be reintubated through the existing stoma, using an appropriately sized endotracheal tube. A gum elastic bougie can be used to facilitate such a tube change.

      Bleeding from a tracheotomy can occur early or later after its placement. Bleeding at the site, until definitive hemostasis can be accomplished, may be controlled with application of hemostatic dressings. Bleeding within the airway, causing respiratory distress, may be cleared with suctioning through the tracheotomy inner cannula or tube. In critical circumstances, the tracheotomy tube may be removed so that the stoma can be reintubated with an endotracheal tube that is advanced distal to the site of bleeding to secure the airway. In some cases, the endotracheal tube cuff may also tamponade the bleeding source, and overinflation of the tracheotomy cuff or the endotracheal tube cuff may be considered.

      While tracheotomies provide a potential source of respiratory distress, it is important that their presence does not result in overlooking other causes, as discussed. If supplemental oxygen is necessary, humidification is appropriate to prevent drying of secretions.

      Respiratory distress is a very common complaint in the prehospital setting. The initial evaluation should be focused on identifying immediate threats to life and determining needs for immediate intervention, such as NIPPV, bag‐valve‐mask ventilation, or advanced airway management (supraglottic airway or endotracheal intubation). Once this evaluation is completed, efforts should be focused on attempting to determine the underlying cause of the problem. Respiratory distress may be caused by a primary pulmonary, cardiovascular, or infectious problem issue, or as part of the compensation for another nonpulmonary problem.

      In general, treatment should include titrated oxygen with cardiac rhythm, pulse oximetry, and waveform capnography monitoring while ensuring timely transport. In stable situations, the emphasis should focus on avoiding overtreatment and resisting the urge to give multiple medications in an undirected fashion. However, short‐acting inhaled bronchodilators should be initiated if there is a concern for bronchospasm, and nitrates should be considered as first‐line therapy in the patient with findings consistent with ADHF or SCAPE.

      1 1 Baeder L. V2 911 Call Complaint vs EMS Provider Findings. National EMS Information System. Available at: https://wiki.utahdcc.org/confluence/x/nYAsAQ. Accessed August 10, 2020.

      2 2 Prekker ME, Feemster LC, Hough CL, et al. The epidemiology and outcome of prehospital respiratory distress. Acad Emerg Med. 2014; 21:543–50.

      3 3 Stiell IG, Spaite DW, Field B, et al. Advanced life support for out‐of‐hospital respiratory distress. N Engl J Med. 2007; 356:2156–64.

      4 4 Williams TA, Finn J, Fatovich D, Perkins GD, Summers Q, Jacobs I. Paramedic differentiation of asthma and COPD in the prehospital setting is difficult. Prehosp Emerg Care. 2015; 19:535–43.

      5 5 Ackerman R, Waldron RL. Difficulty breathing: agreement of paramedic and emergency physician diagnoses. Prehosp Emerg Care. 2006; 10:77–80.

      6 6 Jaronik J, Mikkelson P, Fales W, Overton DT. Evaluation of prehospital use of furosemide in patients with respiratory distress. Prehosp Emerg Care. 2006; 10:194–7.

      7 7 DeVon HA, Penckofer S, Larimer K. The association of diabetes and older age with the absence of chest pain during acute coronary syndromes. West J Nurs Res. 2008; 30:130–44.

      8 8 McSweeney JC, Cody M, O'Sullivan P, Elberson K, Moser DK, Garvin BJ. Women's early warning symptoms of acute myocardial infarction. Circulation. 2003; 108:2619–23.

      9 9 Laursen CB, Hanselmann A, Posth S, Mikkelsen S, Videbaek L, Berg H. Prehospital lung ultrasound for the diagnosis of cardiogenic pulmonary oedema: a pilot study. Scand J Trauma Resusc Emerg Med. 2016; 24:96.

      10 10 Lichtenstein DA, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill. Lung sliding. Chest. 1995; 108:1345–8.

      11 11 Dulchavsky SA, Schwarz KL, Kirkpatrick AW, et al. Prospective evaluation of thoracic ultrasound in the detection of pneumothorax. J Trauma. 2001; 50:201–5.

      12 12 Egleston CV, Ben Aslam H, Lambert MA. Capnography for monitoring non‐intubated spontaneously breathing patients in an emergency room setting. J Accid Emerg Med. 1997; 14:222–4.

      13 13 Manifold CA, Davids N, Villers LC, Wampler DA. Capnography for the nonintubated patient in the emergency setting. J Emerg Med. 2013; 45:626–32.

      14 14 Hunter CL, Silvestri S, Ralls G, Papa L. Prehospital end‐tidal carbon dioxide differentiates between cardiac and obstructive causes of dyspnoea. Emerg Med J. 2015; 32:453–6.

      15 15 Hunter C, Putman M, Foster J, et al. Utilizing end‐tidal carbon dioxide to diagnose diabetic ketoacidosis in prehospital patients with hyperglycemia. Prehosp Disaster Med. 2020; 35:281–4.

      16 16 Austin MA, Wills KE, Blizzard L, Walters EH, Wood‐Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010; 341:c5462.

      17 17 Singer AJ, Emerman C, Char DM, et al. Bronchodilator therapy in acute decompensated heart failure patients without a history of chronic obstructive pulmonary disease. Ann Emerg Med. 2008; 51:25–34.

      18 18 Fisher AA, Davis MW, McGill DA. Acute myocardial infarction associated with albuterol. Ann Pharmacother. 2004; 38:2045–9.

      19 19 Hodroge SS, Glenn M, Breyre A, et al. Adult patients with respiratory distress: current evidence‐based recommendations for prehospital care. West J Emerg Med. 2020; 21:849–57.

      20 20 Williams TA, Finn J, Perkins GD, Jacobs IG. Prehospital continuous positive airway pressure for acute respiratory failure: a systematic review and meta‐analysis. Prehosp Emerg Care. 2013; 17:261–73.

      21 21 Aguilar SA, Lee J, Dunford JV, et al. Assessment of the addition of prehospital continuous positive airway pressure (CPAP) to an urban emergency medical services (EMS) system in persons with severe respiratory distress. J Emerg Med. 2013; 45:210–9.

      22 22 Mal S, McLeod S, Iansavichene A, Dukelow A, Lewell M. Effect of out‐of‐hospital noninvasive positive‐pressure support ventilation in adult patients with severe respiratory distress: a systematic review and meta‐analysis. Ann Emerg Med. 2014; 63(5):600–607.

      23 23 Bledsoe BE, Anderson E, Hodnick R, Johnson L, Johnson S, Dievendorf E. Low‐fractional oxygen concentration continuous positive airway pressure is effective in the prehospital setting. Prehosp Emerg Care. 2012; 16:217–21.

      24 24 US Centers for Disease Control and Prevention. Most recent national asthma data. Available at: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm. 2020. Accessed August 10, 2020.

      25 25 National Heart, Lung and Blood Institute, National Institutes of Health. Guidelines for the diagnosis and management of asthma (EPR‐3). Available at: www.nhlbi.nih.gov/guidelines/asthma/index.htm. 2007. Accessed August 21, 2020.

      26 26 Nagurka R, Bechmann S, Gluckman W, Scott SR, Compton S, Lamba S. Utility of initial prehospital

Скачать книгу