Emergency Medical Services. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Emergency Medical Services - Группа авторов страница 75

Emergency Medical Services - Группа авторов

Скачать книгу

between acute pulmonary embolism and acute coronary syndromes on the basis of negative T waves. Am J Cardio. 2007; 99:817–21.

      67 67 Courtney DM, Kline JA. Prospective use of a clinical decision rule to identify pulmonary embolism as likely cause of outpatient cardiac arrest. Resuscitation. 2005; 65:57–64.

      68 68 Perrott J, Henneberry RJ, Zed PJ. Thrombolytics for cardiac arrest: case report and systematic review of controlled trials. Ann Pharmacother. 2010; 44:2007–13.

      69 69 Abu‐Laban RB, Christenson JM, Innes GD, et al. Tissue plasminogen activator in cardiac arrest with pulseless electrical activity. N Engl J Med. 2002; 346:1522–8.

      70 70 Bintcliffe O, Maskell N. Spontaneous pneumothorax. BMJ. 2014; 348:g2928.

      71 71 Dickson RL, Gleisberg G, Aiken M, et al. Emergency medical services simple thoracostomy for traumatic cardiac arrest: postimplementation experience in a ground‐based suburban/rural emergency medical services agency. J Emerg Med. 2018; 55:366–71.

      72 72 Hannon L, St Clair T, Smith K, et al. Finger thoracostomy in patients with chest trauma performed by paramedics on a helicopter emergency medical service. Emerg Med Australa. 2020; 32:650–6.

       Vincent N. Mosesso, Jr and Angus M. Jameson

      Oxygenation and ventilation are critical life‐sustaining functions, and their evaluation and management are primary components of emergency medical services (EMS) care. While these two parameters are related, they are distinct physiological functions that require independent assessment. The focus of this chapter is on diagnostic aids and management, and EMS physicians and other clinicians must develop and maintain expert physical examination skills for the proper assessment of these important processes. The astute EMS clinician will observe demeanor, mentation, ability to speak, ease and volume of air exchange, work of breathing, upper or lower airway obstruction, pulmonary congestion, and central and peripheral cyanosis. These findings should be considered together with diagnostic test results to determine the status of oxygenation and ventilation in an individual patient, whether intervention is needed, and, if so, which treatment modalities are indicated.

      Several tools have been developed that can reliably measure oxygenation of blood in the prehospital environment. Portable devices are available that can measure oxygen content in arterial and venous blood samples (i.e., PaO2). However, because of cost and the need to perform vascular puncture, these devices are typically only used at selected special event venues and by critical care teams. Most commonly, oxygen levels in the field are determined by pulse oximetry (i.e., oxygen saturation, SpO2). This simple, noninvasive method reports the percentage of hemoglobin in arteriolar blood that is in a saturated state. It is important for prehospital clinicians to understand that standard pulse oximetry does not discriminate between hemoglobin saturated with oxygen and hemoglobin saturated with carbon monoxide (i.e., oxyhemoglobin versus carboxyhemoglobin). In cases of carbon monoxide exposure, pulse oximetry will be misleading to the unsuspecting clinician [1]. Newer‐generation devices are available that can measure carboxyhemoglobin levels distinct from oxyhemoglobin [2].

      Pulse oximetry may be unreliable in states of low tissue perfusion, such as with shock or local vasoconstriction due to cold temperature. Additionally, as this technology relies on transmission and absorption of light waves, barriers such as fingernail polish or skin disease can interfere with accuracy.

      Measurement of tissue oxygenation saturation (StO2) uses near‐infrared light resorption to measure oxygen saturation of blood in the skin and underlying soft tissue. This enables assessment of oxygen delivery and consumption in local tissue rather than simply the amount of oxygen circulating in the arterial system, which is measured by pulse oximetry. While there are increasing reports of the utility of this technology, it is not yet in widespread clinical use due to cost, technical limitations, and lack of large clinical studies [3].

Physiological process Pathological conditions
Partial pressure of oxygen in inhaled air Displacement by other gases
Minute ventilation (volume of air inhaled per minute) External compression of chest
Muscle weakness (chest wall and/or diaphragm)
Central nervous system control malfunction
Decreased lung compliance
Pneumothorax
Hemothorax and pleural effusion
Diffusion of oxygen across the alveolar membrane Pneumonitis
Alveolar and/or interstitial edema
Perfusion of the alveoli Decreased cardiac output
Hypotension
Shunting

       Schematic illustration of oxygen-hemoglobin dissociation curve

Скачать книгу