Graph Spectral Image Processing. Gene Cheung

Чтение книги онлайн.

Читать онлайн книгу Graph Spectral Image Processing - Gene Cheung страница 18

Graph Spectral Image Processing - Gene Cheung

Скачать книгу

equation [1.42], the challenges are designing and choosing the appropriate sampling operator Sk and the appropriate filters hk(L) and gk(L). The perfect reconstruction condition can be satisfied with proper sets of these.

      Various methodologies have been proposed in literature with different strategies. The recent methods of such transforms are summarized in Sakiyama et al. (2019c). We have omitted these details because they are beyond the scope of this chapter. Instead, some design guidelines are listed as follows:

       – Sampling operator: In GSP, two different definitions of sampling operators exist (Tanaka et al. 2020; Tanaka 2018; Tanaka and Eldar 2020). One is vertex domain sampling, which is an analog of time-domain sampling. The other is graph frequency domain sampling, which is a counterpart of the Fourier domain expression of sampling. Both are not interchangeable in general, and have their own advantages and disadvantages.

       – Localized transform: As mentioned later in section 1.6.5, polynomial filters are localized in the vertex domain. Furthermore, if all filters are polynomials, the entire transform can be eigendecomposition free, and thus, its computation decreases significantly.

       – Flexible design adapting various spectra: Different graphs have unique eigenvalue distributions, and different graph operators have unique characteristics. Additionally, we sometimes encounter repeated eigenvalues. A unified design strategy is required for representing various graph signals sparsely.

      As we mentioned in the previous sections, a naïve implementation of spectral graph filters often requires a high computational complexity. Since we often need to process high-resolution images, reducing such a complexity would be a high priority. Moreover, spectral filtering is often iteratively employed for image restoration, like an internal algorithm for convex optimization problems. In this section, we describe a workaround to alleviate computational burden for graph spectral filtering.

      1.6.1. Subdivision

      A simple solution for image subdivision is the block-based approach. It divides the input image into an equal-sized subblocks (these blocks can be overlapped with an appropriate window function), after which the favorite image processing tasks can be performed. The advantage it provides is simplicity: we only have to consider the size of subblocks to make a trade-off between performance and complexity. Sizes of the consistent image regions vary significantly; as a result, a recursive subdivision, called quadtree decomposition, provides a good trade-off.

      More complex image subdivisions are also possible by utilizing an image segmentation. Although these segmentated sub-images are not rectangular in general, we can directly perform graph-based image processing in such non-rectangular regions by using appropriate graphs.

      1.6.2. Downsampling

      Downsampling is another typical approach for reducing the computation cost, and this has been used everywhere in image processing applications. A challenge for graph-based image processing is to find a good low-resolution graph, which properly reflects the original pixel structure.

      Reducing the size of a graph is called graph reduction or graph coarsening. It is divided into two phases:

       1) Phase 1: reducing the number of nodes;

       2) Phase 2: reconnecting edges for the downsampled pixels.

      In image processing, Phase 1 is relatively straightforward. We can assume the original image pixels are nodes on a uniform grid. As in usual image processing, picking up every other node (when the image signal is downsampled by two) will be reasonable.

      For more general graphs like those used in point cloud processing, we need to select the “best” set of nodes. This problem is called sampling set selection. Although this is beyond our scope in this chapter, please refer to (Tanaka et al. 2020; Sakiyama et al. 2019c) and references therein.

      In contrast to Phase 1, Phase 2 is not very straightforward. If pixels in the original image/block are associated with a graph, the downsampled one should be reconnected by edges, such that the reduced-size graph reflects the original structure. In the general

       1) the reduced-size graph has non-negative edge weights;

       2) the connectivity of the original graph is preserved in the reduced-size graphs;

       3) the spectrum of the reduced-size graph is representative of the original graph;

       4) the reduced-size graph preserves the original structural properties;

       5) if two nodes are connected in the original graph, they should have a similar edge weights in the reduced-size graph;

       6) it is tractable in terms of implementation and computational complexity;

       7) the reduced-size graph preserves the sparsity (i.e. the ratio between the number of nonzero edges and that of pixels) of the original one.

      Existing reconnection methods do not always satisfy all of these simultaneously; however, they do exhibit some of these properties. The order of the desired properties depends on applications considered. Major approaches have been summarized in Shuman et al. (2016a).

      1.6.3. Precomputing GFT

      If an image or subblock has several typical patterns, i.e. graphs, precomputing GFT bases for these graphs may be a reasonable choice to decrease the computational burden. This is because when we use them off the shelf, the computation cost reduces significantly as a result of decreased complexity, with a sacrifice of the storage cost for the GFT matrices and the cost of searching the optimal precomputed GFT from a given image. This precomputing strategy is popular in standard image processing. For example, in modern image/video coding standards, some precomputed transforms, such as DCT and discrete sine transform (DST) with various sizes, are utilized to represent image blocks as sparsely as possible.

      Some precomputing methods have been proposed by Hu et al. (2015) and Zhang and Liang (2017), and they are mainly used for image compression. As expected, the GFT yields sparse transformed coefficients for piecewise smooth images/blocks. For those without such piecewise regions, conventional transforms like the DCT and DST are basically included as a set of precomputed bases.

      1.6.4. Partial eigendecomposition

Скачать книгу