Nanotecnología. Mónica Lucía Álvarez-Láinez
Чтение книги онлайн.
Читать онлайн книгу Nanotecnología - Mónica Lucía Álvarez-Láinez страница 8
2 Ha sido notorio en los últimos años un uso creciente del prefijo nano-, para denotar a una enorme cantidad de términos con una significación usualmente comprometida con la escala macroscópica: nanocomputación, nanomedicina, nanorrobótica, nanoelectrónica, etc. Ver como ejemplo en National Academy of Sciences[5] una lista de términos que emplean este prefijo.
3 La palabra ‘paradigma’ deriva del griego parádeigma, donde el vocablo pará significa “junto” y deigma significa “modelo”. Para T. S. Kuhn, los paradigmas “son realizaciones científicas universalmente reconocidas que, durante cierto tiempo, proporcionan modelos de problemas y soluciones a una comunidad científica”[17].
4 La fotosíntesis sintética representa uno de los grandes desafíos del siglo xxi. Conseguir imitar los procesos que ocurren en las plantas, y que permiten convertir la radiación solar en formas útiles de energía, es una de las metas que deben ser alcanzadas por la nanociencia y la nanotecnología.
2. ¿Cómo se hace lo nano? Diseño y síntesis
Mónica Lucía Álvarez-Láinez
Franklin Jaramillo Isaza
2.1 Introducción
Al descubrirse que en la escala nanométrica la proporción de átomos que hay en la superficie de un material es mucho más alta con respecto a la de su interior, para el desarrollo de la nanotecnología ha sido esencial encontrar la manera de lograr la síntesis o la elaboración de nanomateriales. Es por eso que este capítulo se dedica a presentar los principales métodos de síntesis de nanomateriales, en tanto el estudio de nuevas propiedades y aplicaciones es posible solo cuando estos son sintetizados en las dimensiones, la forma, la estructura y la composición química deseadas.
Para producir nanomateriales se han diferenciado dos métodos o enfoques: la reducción de tamaño y el autoensamble[1], que se describen a continuación:
1. Reducción de tamaño o top-down: se basa en imitar la naturaleza. El proceso de fabricación se inicia con materiales grandes, y luego su estructura se miniaturiza hasta alcanzar la escala nanométrica. Es el tipo de nanotecnología más frecuente en la actualidad.
2. Autoensamble o bottom-up: inicia con una estructura nanométrica sobre la cual se da un proceso de montaje o anclaje que da lugar a una estructura de mayor tamaño. Este proceso es conocido como nanotecnología molecular. Con este método, desarrollado por el investigador K. Eric Drexel, se pueden obtener tamaños más pequeños que con el top-down.
En este capítulo se presentan los métodos más relevantes para obtener nanomateriales teniendo en cuenta la dimensionalidad de los nanoobjetos; se exponen los mecanismos para fabricar películas delgadas, nanotubos, nanoalambres, nanofibras y nanopartículas; y se hace además una pequeña aproximación a la fabricación de materiales nanoestructurados, tales como los nanocompuestos, y a un proceso de miniaturización, como lo es la nanolitografía.
2.2 Fabricación de películas delgadas
La nanotecnología basada en películas delgadas es un nuevo alcance para diseñar, fabricar o modelar nanorrecubrimientos. Una película delgada es una capa de material que puede abarcar desde unos pocos nanómetros (monocapa) hasta varias micras de espesor. Las películas delgadas están siendo utilizadas para fabricar dispositivos fotovoltaicos de alta eficiencia (celdas solares) para aprovechar la energía solar. Los nanorrecubrimientos constituyen un mercado en expansión, ya que a partir de estos se pueden fabricar recubrimientos duros en herramientas de corte y superficies antimicrobianas de fácil limpieza y autolavables, que son usados en las industrias del empaque de alimentos y de los fármacos.
Las películas delgadas pueden ser obtenidas mediante un proceso de deposición, el cual se consigue a partir de la modificación de los cuatro estados de la materia: sólido, líquido, gaseoso y plasma. Los procesos de deposición más relevantes para fabricar películas delgadas de alta calidad vienen acompañados de alto vacío o de ultra alto vacío (10-10 atm), y generalmente permiten un control muy homogéneo de las propiedades físicas y químicas resultantes. Estos procesos pueden ser físicos, químicos o fisicoquímicos[2]:
• Métodos físicos: evaporación térmica o deposición física en fase de vapor (pvd) y epitaxia de haces moleculares (mbe).
• Métodos fisicoquímicos: pulverización catódica (en inglés, sputtering), plasma y procesos térmicos de formación.
• Métodos químicos en fase de vapor: deposición química en fase de vapor (cvd), deposición química metalorgánica en fase de vapor (movpe), epitaxia de haces moleculares químicos (cbe) y epitaxia en fase de vapor (vpe).
• Métodos químicos en fase líquida: electrodeposición, epitaxia en fase líquida (lpe), doctor blade, impresión en tinta y técnicas de centrifugación, etc.
Por medio de estas técnicas es posible producir una gran variedad de materiales, a partir de elementos metálicos, aleaciones complejas, óxidos metálicos y tierras raras, entre otros.
2.3 Fabricación de nanoestructuras cuasiunidimensionales
La fabricación de sistemas de una dimensión, o cuasiunidimensionales, como los nanoalambres (en inglés, nanowires), las nanovarillas (en inglés, nanorods), los nanotubos o las nanofibras, son muy estudiados actualmente, debido a la gran variedad de propiedades que presentan y a su atractivo para la creación de nuevas aplicaciones. La principal diferencia entre estas estructuras es la relación longitud (L) / diámetro (D) (L/D).
2.3.1 Nanoalambres
Los nanoalambres, llamados también nanohilos, suelen ser fabricados a partir de materiales inorgánicos, especialmente metálicos, anisotrópicos y de diámetros nanométricos pero con una gran área superficial. Debido a la densidad de sus estados electrónicos, se espera que los nanoalambres posean propiedades ópticas, eléctricas y magnéticas diferentes a las que tienen los materiales de origen en masa (3-D)[1].
Su fabricación se basa en la síntesis a partir de plantillas (en inglés, templates). Las plantillas suelen tener poros de tamaños nanométricos, espaciados para formar redes bidimensionales con una forma predeterminada, los cuales se llenan con el material deseado[3]. Dependiendo de la plantilla y de la interacción entre el material de soporte y el del que se quiere hacer el alambre, se pueden obtener alambres sólidos o huecos (nanotubos)[4]. Las plantillas usadas generalmente son fabricadas a partir de membranas porosas de alúmina, nanocanales de vidrio, películas de mica o membranas poliméricas con poros hechos a partir del bombardeo de iones (track-etch).
Las membranas porosas de alúmina se producen a partir de la anodización de láminas de aluminio en soluciones ácidas[5-6]. La formación de poros ocurre de manera ordenada y con tamaños uniformes entre 10 y 200 nm, con una densidad de poros de 109 y 1011 poros/cm2[1]. Otras membranas muy utilizadas son las poliméricas, en las cuales una película de espesores entre 6 y 20 nm es bombardeada con iones que producen poros con la densidad deseada, de tamaños homogéneos y distribución aleatoria. Los polímeros para la fabricación de estas membranas