Diabetic Neuropathy. Friedrich A. Gries
Чтение книги онлайн.
Читать онлайн книгу Diabetic Neuropathy - Friedrich A. Gries страница 33
[76] Kahn CR, Vincent D, Doria A. Genetics of non-insulin-dependent (type II) diabetes mellitus. Annu Rev Med 1996; 47: 509-31.
[77] Karam JH. Reversible insulin resistance in non-insulin-dependent diabetes mellitus. Horm Metab Res 1996; 28: 440-4.
[78] Dugi K, Kassessinoff T, Nawroth PP. Type 2 Diabetes und genetische Defekte der β-Zellfunktion. In: Nawroth PP, editor. Kompendium Diabetologie. Berlin: Springer; 1999: 170-268.
[79] Zhang Y, Wat N, Stratton IM, Warren-Perry MG, Orho M, Groop L, Turner RC. UKPDS 19: Heterogeneity in NIDDM: separate contributions of IRS-1 and β3-adrenergic receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. Diabetologia 1996; 39: 1503-11.
[80] Grant PJ, Strickland MH, Mansfield MW. Insulin receptor subsrrate-1 gene and cardiovascular risk factors in NIDDM [letter]. Lancet 1995; 346: 841-2.
[81] Garvey WT, Huecksteadt TP, Mathaei S, Olefsky M. Role of glucose transporters in the cellular insulin resistance of type II non-insulin-dependent diabetes mellitus. J Clin Invest 1988; 81: 1528-36.
[82] Reynet C, Kahn CR. Rad: a member of the ras family overexpressed in muscle of type II diabetic humans. Science 1993; 262: 1441-4.
[83] Hager J, Hansen L, Vaisse C, Vionnet N, Philippi A, Poller W, Velho G, Carcassi C, Contu L, Julier C, et al. A missense mutation in the glucagon receptor gene is associated with non-insulin-dependent diabetes mellitus. Nat Genet 1995; 9: 299-304.
[84] Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995; 95: 1281-7.
[85] Walston J, Silver K, Bogardus C, Knowler WC, Celli FS, Austin S, Manning B, Strosberg AD, Stern M, Raben N, Sorkin JD, Roth J, Shuldiner AR. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β3-adrenergic receptor gene. N Engl J Med 1995; 333: 343-7.
[86] Hotamisligil GS. Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994; 43: 1271-8.
[87] Shagizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF-α by human muscle. J Clin Invest 1996; 97: 1111-6.
[88] Liu SL, Spelleken M, Röhrig K, Hauner H, Eckel J. Tumor necrosis factor-α acutely inhibits insulin signalling in human adipocytes. Diabetes 1998; 47: 515-22.
[89] Horikawa Y, Oda N, Cox NJ. Lix, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE del Bosque-Plata L, Horikawa Y, Oda Y, Yoshinchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000; 26: 163-75.
[90] Holman GD, Kasuga M. From receptor to transporter: insulin signalling to glucose transport. Diabetologia 1997; 40:991-1003.
[91] Lillioja S, Mott DM, Zawadzki JK, Young AA, Abbott WGH, Knowler WC, Bennett PH, Moll P, Bogardus C. In vivo insulin action is familial characteristic in non diabetic Pima Indians. Diabetes 1987; 36: 1329-35.
[92] Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widen E, Schalin C, Groop L. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989; 321: 337-43.
[93] DeFronzo R. The triumvirate β-cell, muscle, and liver: a collusion responsible for NIDDM. Diabetes 1988; 37: 667-87.
[94] Groop LC, Kankutr RTM, Schalin-Jäntti C, Eckstrand A, Nikula-lljäs P, Widen E, Kuismanen E, Eriksson J, Franssila-Kallunki A, Saloranta C, Koskimies S. Association between polymorphism of the glycogen synthase gene and non- insulin-dependent diabetes mellitus. N Engl J Med 1993; 328: 10-4.
[95] Krutzfeldt J, Kausch C, Volk A, Klein HH, Rett K. Häring HU, Stumvoll M. Insulin signaling and action in cultured skeletal muscle cells from lean healthy humans with high and low insulin sensitivity. Diabetes 2000; 49: 992-8.
[96] Colberg SR, Simeneau J, Icland Thaete F, Kelley DE. Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest 1995; 95: 1846-53.
[97] Dresner A, Laurent D, Marcuccl M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rorhman Dl, Petersen KF, Shulman GI. Effects of free fatty acids on glucose transport and IRS-1 associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103: 253-9.
[98] Kersten S, Seydoux J, Peters J, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor-α mediates the adaptive response to fasting. J Clin Invest 1999; 103: 1489-98.
[99] Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose-fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; i: 785-9.
[100] Boden G Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proc Ass Amer Phys 1999, 111:241-8.
[101] Rebrin K, Steil GM, Getty L, Bergmann RN. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44: 1038-45.
[102] Bavenholm PN, Pigon J, Östenson CG, Efendic S. Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance. Diabetes 2001; 50: 1449-54.
[103] Hotomisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-u and obesity induced insulin resistance. Science 1996; 271: 665-8.
[104] Hauner H, Petruschke T, Russ M, Eckel J. Effects of tumor necrosis factor alpha (TNF-α) on glucose transport and lipid metabolism of newly differentiated human fat cells in cell culture, Diabetologia 1995; 38: 764-71.
[105] Stephens JM, Pekala PH. Transcriptional repression of the GLUT-4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-α. J Biol Chem 1991; 266: 21839-45.
[106] Mitchell TH, Abraham G, Schiffrin A, Leiter LA, Marliss E Hyperglycaemia after intensive exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care 1988; 11:311-7.
[107] Cries FA, Nutrition and physical activity in diabetes. In: Fabris F, Pernigotti L, Ferrario E, editors. Sedentary life and nutrition. New York: Raven Press; 1990: 157-62.
[108] Wallberg-Henriksson H. Repeated exercise regulates glucose transport capacity in skeletal muscle. Acta Physiol Scand 1986; 127: 39-43.
[109] Dela F, Ploug T, Handberg A, Petersen LN, Larsen JJ, Mikines KJ, Galbo H. Physical training increases muscle GLUT-4 protein and mRNA in patients with NIDDM. Diabetes 1994; 43: 862-5.
[110] Giaccari A, Morviducci L, Zoretta D, Sbraccia P, Caiola S, Buongiorno A. Bonadonna RC, Tamburrano G. In vivo effects of glucosamine on insulin secretion and insulin sensitivity in the rat: possible relevance to the maladaptive response to chronic hyperglycaemia. Diabetologia 1995; 38:518-24.
[111] Baron AD, Zhu JS, Zhu JH, Weldon H, Maianu L, Garvey WT. Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity. J Clin Invest 1995; 96: 2792-801.
[112] Hawkins M, Hu M, Yu J, Eder H, Vuguin P, She L, Barcilai N, Leiser M, Backer JM, Rossetti L. Discordant effects of glucosamine on insulin-stimulated glucose metabolism and phosphatidylinositol-3-kinase activity. J Biol Chem 1999; 274: 31312-19.
[113] Pimenta W, Korytkowski M, Mitrakou A, Jenssen