Introduction to Engineering Research. Wendy C. Crone
Чтение книги онлайн.
Читать онлайн книгу Introduction to Engineering Research - Wendy C. Crone страница 5
http://college.ucla.edu/urc-care/
. Accessed January 2008.
3Wilson, R., Cramer, A., and Smith, J. L., 2004. Research is another word for education, from Reinvigorating the Undergraduate Experience: Successful Models Supported by NSF’s AIRE/RAIRE Program, L. R. Kauffman and J. E. Stocks, Eds., Council on Undergraduate Research, Washington, DC.
4The University of Washington Undergraduate Research Program. http://www.washington.edu/research/urp/
, accessed January 2008.
5The University of Virginia Department of Science, Technology, and Society Undergraduate Thesis Project, http://www.sts.virginia.edu/stshome/tiki-index.php?page=Undergraduate+
Thesis accessed January 2008.
6Katkin, W., 2004. The integration of research and education: A case study of reinventing undergraduate education at a research university, from Reinvigorating the Undergraduate Experience: Successful Models Supported by NSF’s AIRE/RAIRE Program, L. R. Kauffman and J. E. Stocks, Eds., Council on Undergraduate Research, Washington, DC: 2004.
7Bahr, D. F. and Findley, K. O., 2007. An intensive ‘camp’ format to provide undergraduate research experiences to first year students. Materials Research Society 2007 Fall Meeting: Session W4: Implementing New Course Materials and Strategies, November 28.
8Merkel, C. A. and Baker, S. M., How to Mentor Undergraduate Researchers, Council on Undergraduate Research, Washington, DC, 2002.
9Burkett, S. L., Lusth, J. C., Bahr, D., Pressley, S., and Schneider, K., 2013. Three training programs for preparing undergraduates to conduct research. Proc. American Society for Engineering Education Annual Conference, Atlanta, GA.
10Schneider, K. R., Bahr, D., Burkett, S., Lusth, J. C., Pressley, S., and VanBennekom, N., 2016. Jump starting research: Preresearch STEM programs. Journal of College Science Teaching, 45(5), p. 13.
11Schneider, K. R., Bahr, D., Burkett, S., Lusth, J. C., Pressley, S., and VanBennekom, N., 2016. Jump starting research: Preresearch STEM programs. Journal of College Science Teaching, 45(5), p. 13.
Acknowledgments
This book is based on my experiences as a research mentor, graduate advisor, instructor in the College of Engineering, and an administrator in the Graduate School of the University of Wisconsin–Madison. I am grateful to all of the undergraduate and graduate research assistants who worked with me over the years, not only for their research contributions, but also for how they helped me to develop and learn as a mentor. Although I have taught the course “Introduction to Engineering Research” for more semesters than I can count, it would not have been as successful without the help of a number of key individuals over the years. I would like to thank Professors Greg Moses, Jake Blanchard, and Carl Sovinec as well as other colleagues at the University of Wisconsin–Madison for their collaboration and shared vision in developing the Engineering Physics degree program and the research sequence upon which this book is based.
I also appreciate the opportunities I had to interact with students in the Engineering Physics undergraduate program and especially for their phenomenal engagement, performance, and feedback. I am especially grateful to former undergraduate and graduate students whose perspectives, insights, and comments are included in the Student Perspectives. These are included in the book with permission from Grant Bodner, Christopher Coaty, Aidan Combs, Brian Cornille, David Czajkowski, Chelsea D’Angelo, Tom Dobbins, Chris Everson, Thomas E. Gage, Brad Gundlach, Cale Kasten, Matt Klebenow, Brian Kupczyk, Geoff McConohy, Hugh Ni, Blair Seidlitz, Dan Segal, and Vladimir Zhdankin. I would also like to thank my father, Richard Crone, and husband, Alan Carroll, for proofreading drafts, and my editor, Paul Petralia, for both his patience and nudging to help me get this book completed.
Dr. Katie Cadwell, who was a postdoctoral research associate with the University of Wisconsin–Madison Materials Research Science and Engineering Center (MRSEC) and is now a Professor at Syracuse University, helped to collect valuable learning resources in an earlier expansion of the course. She also helped to make aspects of it accessible to students outside University of Wisconsin–Madison, and worked with Prof. Naomi Chesler and myself on a related project connected to the undergraduate engineering design experience. I appreciate the funding support received from the National Science Foundation through the MRSEC (#DMR-0079983 and #DMR-0520527) and the University of Wisconsin–Madison College of Engineering 2010 grant for Transforming Undergraduate Education in the College of Engineering. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation nor the University of Wisconsin–Madison.
I had the pleasure of serving in several different administrative roles in the Graduate School at the University of Wisconsin–Madison for five years. These roles included Associate Dean for Graduate Education and Interim Dean, where I provided leadership for all aspects of the graduate student experience, including admissions, academic services, academic analysis, funding, professional development, and diversity. At the time, the University of Wisconsin–Madison Graduate School had a diverse graduate student cohort of ~9,000 in over 140 Master’s and 100 doctoral fields across the University. I learned an immense amount from my colleagues in the Graduate School and my faculty and staff colleagues across the University who devote time and energy to graduate education. These experiences and interactions also allowed me to see graduate education from a broader perspective beyond that of the graduate programs in the College of Engineering where I have served as a graduate advisor and research mentor for over 20 years. This book draws from this range of experiences to provide the best guidance and advice I can give to those entering engineering research at the undergraduate or graduate level.
Wendy C. Crone
February 2020
Credits
Table 3.1 | Adapted with permission from C. Eugene Allen, Emeritus Dean and Distinguished Teaching Professor, and Former Associate Vice President for International Programs, Vice President and Provost, University of Minnesota, Minneapolis, MN. |
Sec. 3.7 | Strategies for recognizing and overcoming bias adapted with permission from Molly Carnes, Eve Fine, Manuela Romero, and Jennifer Sheridan. “Breaking the Bias Habit.” Women in Science and Engineering Leadership Institute (WISELI), University of Wisconsin–Madison, https://wiseli.wisc.edu . |
Figures 4.1–4.4 | Reproduced from Gall, K., Dunn, M. L., Liu, Y., Labossiere, P., Sehitoglu, H., and Chumlyakov, Y. I. (2002). Micro and macro deformation of single crystal NiTi. Journal of Engineering Materials and Technology, 124(2):238–245, with the permission of ASME. |
Reproduced from Maboudian, R. and Howe, R. T. (1997). Critical review: Adhesion in surface micromechanical structures. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 15(1):1–20, with the permission of the American Vacuum Society. | |
Questions on page 85 | From The Thinker’s Guide to Engineering Reasoning: Based on Critical Thinking Concepts and Tools, 2nd ed., (“the work”) Richard Paul © 2013. Used by permission of Rowman & Littlefield Publishing Group. All rights reserved. |
Page 97 | Courtesy of Springer Nature. |
Sec. 5.7.1 | D.I.S.O.R.D.E.R. Framework used with permission of Lisa Newton, Professor Emerita of Philosophy, Fairfield University. |
Page 129 | Reprinted by Permission of the National Society of Professional Engineers (NSPE). www.nspe.org |
Page 153 | Tips for interacting with the public from Bringing
|