Nanotechnology in Plant Growth Promotion and Protection. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Nanotechnology in Plant Growth Promotion and Protection - Группа авторов страница 26

Nanotechnology in Plant Growth Promotion and Protection - Группа авторов

Скачать книгу

et al. (2018). Dose‐dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agriculture, Ecosystems & Environment 255: 95–101.

      96 Rajwade, J.M., Chikte, R.G., and Paknikar, K.M. (2020). Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology 104 (4): 1437–1461.

      97 Raliya, R., Nair, R., Chavalmane, S. et al. (2015a). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7 (12): 1584–1594.

      98 Raliya, R., Biswas, P., and Tarafdar, J.C. (2015b). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports 5: 22–26.

      99  Reddy, P.V.L., Kavitha, B., Reddy, P.A.K., and Kim, K.‐H. (2017). TiO2‐based photocatalytic disinfection of microbes in aqueous media: a review. Environmental Research 154: 296–303.

      100 Rezaei, F., Moaveni, P., and Mozafari, H. (2015). Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr‐e‐Qods. Biological Forum 7 (1): 957–964.

      101 Ruffini Castiglione, M., Giorgetti, L., Geri, C., and Cremonini, R. (2011). The effects of nano‐TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research 13 (6): 2443–2449.

      102 Ruffini Castiglione, M., Giorgetti, L., Bellani, L. et al. (2016). Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environmental and Experimental Botany 130: 11–21.

      103 Šebesta, M. and Matúš, P. (2018). Separation, determination, and characterization of inorganic engineered nanoparticles in complex environmental samples. Chemicke Listy 112 (9): 583–589.

      104 Šebesta, M., Kolenčík, M., Matúš, P., and Kořenková, L. (2017). Transport and distribution of engineered nanoparticles in soils and sediments. Chemicke Listy 111 (5): 322–328.

      105 Šebesta, M., Kolenčík, M., Urík, M. et al. (2019). Increased colloidal stability and decreased solubility – sol‐gel synthesis of zinc oxide nanoparticles with humic acids. Journal of Nanoscience and Nanotechnology 19 (5): 3024–3030.

      106 Šebesta, M., Nemček, L., Urík, M. et al. (2020). Partitioning and stability of ionic, nano‐ and microsized zinc in natural soil suspensions. Science of the Total Environment 700: 134445.

      107 Seeger, E.M., Baun, A., Kästner, M., and Trapp, S. (2009). Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments 9 (1): 46–53.

      108 Servin, A.D., Castillo‐Michel, H., Hernandez‐Viezcas, J.A. et al. (2012). Synchrotron micro‐XRF and micro‐XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science & Technology 46 (14): 7637–7643.

      109 Servin, A.D., Morales, M.I., Castillo‐Michel, H. et al. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science & Technology 47 (20): 11592–11598.

      110 Servin, A., Elmer, W., Mukherjee, A. et al. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research 17 (92): 1–21.

      111 Shaker, A.M., Zaki, A.H., Abdel‐Rahim, E.F.M., and Khedr, M.H. (2017). TiO2 nanoparticles as an effective nanopesticide for cotton leaf worm. Agricultural Engineering International: CIGR Journal, Special: 61–68.

      112 Silva, R.M., TeeSy, C., Franzi, L. et al. (2013). Biological response to Nano‐scale titanium dioxide (TiO2): role of particle dose, shape, and retention. Journal of Toxicology and Environmental Health, Part A 76 (16): 953–972.

      113 Silva, S., Oliveira, H., Craveiro, S.C. et al. (2016). Pure anatase and rutile + anatase nanoparticles differently affect wheat seedlings. Chemosphere 151: 68–75.

      114 Silva, S., Oliveira, H., Silva, A.M.S., and Santos, C. (2017). The cytotoxic targets of anatase or rutile + anatase nanoparticles depend on the plant species. Biologia Plantarum 61 (4): 717–725.

      115 Song, U., Jun, H., Waldman, B. et al. (2013). Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety 93: 60–67.

      116  Su, A., Lin, K., Zhang, W. et al. (2009). Effect of Nano‐TiO2 on the germination and growth of rape seed [J]. Journal of Agro‐Environment Science 2.

      117 Sun, P., Shijirbaatar, A., Fang, J. et al. (2015). Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Science of the Total Environment 505: 189–198.

      118 Sun, W., Dou, F., Li, C. et al. (2020). Impacts of metallic nanoparticles and transformed products on soil health’. Critical Reviews in Environmental Science and Technology: 1–30.

      119 Tan, W., Du, W., Barrios, A.C. et al. (2017). Surface coating changes the physiological and biochemical impacts of nano‐TiO2 in basil (Ocimum basilicum) plants. Environmental Pollution 222: 64–72.

      120 Urík, M., Littera, P., Kim, H. et al. (2020). Sorptive and redox interactions of humic substances and metal(loid)s in presence of microorganisms. In: Mycoremediation and Environmental Sustainability (ed. R. Prasad), 390. Springer.

      121 Wang, J. and Fan, Y. (2014). Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. International Journal of Molecular Sciences 15 (12): 22258–22278.

      122 Wang, Y., Sun, C., Zhao, X. et al. (2016). The application of Nano‐TiO2 photo semiconductors in agriculture. Nanoscale Research Letters 11 (1): 529.

      123 Weir, A., Westerhoff, P., Fabricius, L. et al. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology 46 (4): 2242–2250.

      124 Yan, J., Huang, K., Wang, Y., and Liu, S. (2005). Study on anti‐pollution nano‐preparation of dimethomorph and its performance. Chinese Science Bulletin 50 (2): 108–112.

      125 Yan, X., Yuan, K., Lu, N. et al. (2017). The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur‐doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Applied Catalysis B: Environmental 218: 20–31.

      126 Yang, F., Hong, F., You, W. et al. (2006). Influence of nano‐anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110 (2): 179–190.

      127 Yeo, M.K. and Nam, D.H. (2013). Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes. Environmental Pollution 178: 166–172.

      128 Zahra, Z., Ali, M.A., Parveen, A. et al. (2019). Exposure–response of wheat cultivars to TiO2 nanoparticles in contrasted soils. Soil and Sediment Contamination: An International Journal 28 (2): 184–199.

      129 Zheng, L., Hong, F., Lu, S., and Liu, C. (2005). Effect of nano‐TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research 104 (1): 83–91.

Скачать книгу