Magma Redox Geochemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 48

Magma Redox Geochemistry - Группа авторов

Скачать книгу

implications for spinel thermodynamic models and Fe3+ compatibility during generation of upper mantle melts. American Mineralogist, 103(7), 1056–1067. doi: http://doi.org/10.2138/am‐2018‐6280

      61 Davis, F. A., Humayun, M., Hirschmann, M. M., & Cooper, R. S. (2013). Experimentally determined mineral/melt partitioning of first‐row transition elements (FRTE) during partial melting of peridotite at 3GPa, Geochimica et Cosmochimica Acta, 104, 232–260. doi: 10.1016/j.gca.2012.11.009

      62 Davis, F. A., Cottrell, E., Birner, S. K., Warren, J. M., & Lopez, O. G. (2017). Revisiting the electron microprobe method of spinel‐olivine‐orthopyroxene oxybarometry applied to spinel peridotites. American Mineralogist, 102(2), 421–435.

      63 Debret, B., Andreani, M., Muñoz, M., Bolfan‐Casanova, N., Carlut, J., Nicollet, C., et al. (2014). Evolution of Fe redox state in serpentine during subduction. Earth and Planetary Science Letters, 400, 206–218. doi: 10.1016/j.epsl.2014.05.03

      64 Devine, J. D., Rutherford, M. J., Norton, G. E., & Young, S. R. (2003). Magma storage region processes inferred from geochemistry of Fe‐Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. Journal of Petrology, 44(8), 1375–1400. doi: 10.1093/petrology/44.8.1375

      65 El‐Rus, M. A. A., Neumann, E. R., & Peters, V. (2006). Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths. Lithos, 89(1), 24–46.

      66 Elliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102(B7), 14991–15019.

      67 Eugster, H. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. The Journal of Chemical Physics, 26(6), 1760–1761.

      68 Eugster, H. P. (Ed.) (1959). Oxidation and reduction in metamorphism, New York: John Wiley & Sons. 397–426 pp.

      69 Evans, K. A. (2021), Redox decoupling, redox budgets and magma recycling. In: D. R. Neuville and R. Moretti, (eds.) AGU Geophysical Monograph Redox variables and mechanisms in magmatism and volcanism. Wiley.

      70 Evans, K. A., & Tomkins, A. G. (2011). The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308, 401–409. doi: 10.1016/j.epsl.2011.06.009

      71 Evans, K. A., Elburg, M. A., & Kamenetsky, V. S. (2012). Oxidation state of subarc mantle. Geology, 40(9), 783–786. doi: 10.1130/g33037.1

      72 Ewart, A. (1979). A review of the mineralogy and chemistry of Tertiary‐recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. Developments in Petrology, 6, 13–121.

      73 Farner, M. J., & Lee, C.‐T. A. (2017). Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters, 470, 96–107. doi: 10.1016/j.epsl.2017.04.025

      74 Farnetani, C. G., & Hofmann, A. W. (2010). Dynamics and internal structure of the Hawaiian plume. Earth and Planetary Science Letters, 295(1–2), 231–240. doi: 10.1016/j.epsl.2010.04.005

      75 Ferrari, L., Orozco‐Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans‐Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122–149. doi: 10.1016/j.tecto.2011.09.018

      76 Finotello, M., Nyblade, A., Julià, J., Wiens, D. A., & Anandakrishnana, S. (2011). Crustal Vp‐Vs ratios and thicknesses for Ross Island and the Transantarctic Mountain front, Antarctica. Geophysical Journal International, 185, 85–92.

      77 Fleet, M. E., Liu, X., Harmer, S. L., & King, P. L. (2005). Sulfur K‐edge XANES spectroscopy: Chemical state and content of sulfur in silicate glasses. The Canadian Mineralogist, 43(5), 1605–1618.

      78 Foden, J., Sossi, P. A., & Nebel, O. (2018). Controls on the iron isotopic composition of global arc magmas. Earth and Planetary Science Letters, 494, 190–201. doi: 10.1016/j.epsl.2018.04.039

      79 French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525, 95–99. doi: 10.1038/nature14876

      80 Frey, F., & Roden, M. F. (1987). The mantle source for Hawaiian Islands. Constraints from the lavas and ultramafic inclusions. In: Menzies, M. A., & Hawkesworth, C. J. (Eds.) Mantle Metasomatism. London: Academic Press. pp. 423–463.

      81 Frey, H. M., & Lange, R. A. (2011). Phenocryst complexity in andesites and dacites from the Tequila volcanic field, Mexico: resolving the effects of degassing vs. magma mixing. Contributions to Mineralogy and Petrology, 162(2), 415–445. doi: 10.1007/s00410‐010‐0604‐1

      82 Frost, B. R. (Ed.) (1991). Introduction to oxygen fugacity and its petrologic importance, 1–9 pp. BookCrafters Inc., Chelsea, MI.

      83 Frost, B. R., & Lindsley, D. H. (1992). Equilibria among Fe‐Ti oxides, pyroxenes, olivine, and quartz 2. Application American Mineralogist, 77(9–10), 1004–1020.

      84 Frost, D. J., & McCammon, C. A. (2008). The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36(1), 389–420, doi: doi:10.1146/annurev.earth.36.031207.124322

      85 Fryer, P., Ambos, E., & Hussong, D. (1985). Origin and emplacement of Mariana forearc seamounts. Geology, 13(11), 774–777.

      86 Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E., & Newville, M. (2012). Rapid reequilibration of H2O and oxygen fugacity in olivine‐hosted melt inclusions. Geology, 40(10), 915–918.

      87 Gaillard, F., Scaillet, B., Pichavant, M., & Iacono‐Marziano, G. (2015). The redox geodynamics linking basalts and their mantle sources through space and time. Chemical Geology, 418, 217–233. doi: 10.1016/j.chemgeo.2015.07.030

      88 Gale, A., Laubier, M., Escrig, S., & Langmuir, C. H. (2013a). Constraints on melting processes and plume‐ridge interaction from comprehensive study of the FAMOUS and North Famous segments, Mid‐Atlantic Ridge. Earth and Planetary Science Letters, 365, 209–220. doi: 10.1016/j.epsl.2013.01.022

      89 Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., & Schilling, J.‐G. (2013b). The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518. doi: 10.1029/2012gc004334

      90 Genske, F. S., Turner, S. P., Beier, C., & Schaefer, B. F. (2012). The petrology and geochemistry of lavas from the Western Azores Islands of Flores and Corvo. Journal of Petrology, 53(8), 1673–1708. doi: 10.1093/petrology/egs029

      91 Ghiorso, M. S., & Evans, B. W. (2008). Thermodynamics of rhombohedral oxide solid solutions and a revision of the FE‐TI two‐oxide geothermometer and oxygen‐barometer. American Journal of Science, 308(9), 957–1039. doi: 10.2475/09.2008.01

      92 Gill, J. B. (1981). Orogenic Andesites and Plate Tectonics, New York: Springer‐Verlag. 390 pp.

      93 Grégoire, M., Moine, B. N., O’Reilly, S. Y., Cottin, J. Y., & Giret, A. (2000). Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate‐and carbonate‐rich melts (Kerguelen Islands, Indian Ocean). Journal of Petrology, 41(4), 477–509.

      94 Grocke, S. B., Cottrell, E., de Silva, S., & Kelley, K. A. (2016). The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron

Скачать книгу