Magma Redox Geochemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 46

Magma Redox Geochemistry - Группа авторов

Скачать книгу

relationships of H2, H2O, CO2, H2S, and SO2. We also executed model runs wherein we set the solubility of H2 in the silicate melt to zero in order to demonstrate how uncertainty in the speciation of H‐species in silicate melts (e.g., finite solubility [Hirschmann et al., 2012; Mysen et al., 2011] vs no solubility ([Newcombe et al., 2017]) propagates into uncertainty in degassing trajectories, particularly those at relatively low fO2. Among these simulations, only the scenario of an arc magma decompressing at QFM= 0 (i.e., H2O‐rich magma in equilibrium with a gas phase containing non‐negligible amounts of H2) was sensitive to this assumption (Fig. 3.5). All calculations are calculated as equilibrium (i.e., batch) isothermal decompression, at 1100 °C. The calculations intended to simulate MORB degassing were started at QFM and 1385 bar, with concentrations of volatiles similar to those calculated for globally representative primary MORB melts (Le Voyer et al., 2018) containing 0.2 wt.% H2O, 1100 ppm CO2, and 1425 ppm S. Increasing CO2 to several thousand ppm has no effect on the trajectories shown. The calculations intended to simulate OIB degassing were started at QFM +1.4 and 2115 bar, with concentrations of volatiles similar to those expected for undegassed Erebus melts (Mousallam et al., 2014) containing 1.5 wt% H2O, 1710 ppm CO2, and 2430 ppm S. The calculations intended to simulate arc degassing were started at QFM +1.5 and 2380 bar, with concentrations of volatiles similar to those observed in melt inclusions from Agrigan volcano, containing 4.5 wt.% H2O, 800 ppm CO2, and 2050 ppm S (e.g., Kelley & Cottrell, 2012). Melt chemistry (including fO2) and gas phase compositions were calculated in 1 bar increments and stopped at 5 bars (total pressure).

      1 Allen, W., & Snow, R. (1955). The orthosilicate‐iron oxide portion of the system CaO‐“FeO”‐SiO2. Journal of the American Ceramic Society, 38(8), 264–272.

      2 Anderson, A. T., & Wright, T. L. (1972). Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas, Kilauea Volcano, Hawaii. American Mineralogist, 57(1–2), 188–216.

      3 Andreani, M., Munoz, M., Marcaillou, C., & Delacour, A. (2013). u‐XANES study of iron redox state in serpentine during oceanic serpentinization. Lithos, 178, 70–83. doi: 10.1016/j.lithos.2013.04.008

      4 Arce, J. L., Gardner, J. E., & Macias, J. L. (2013). Pre‐eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico. Journal of Volcanology and Geothermic Research, 249, 49–65. doi: 10.1016/j.jvolgeores.2012.09.012

      5 Bacon, C. R., & Hirschmann, M. M. (1988). Mg/Mn Partitioning as a Test for Equilibrium between Coexisting Fe‐Ti Oxides. American Mineralogist, 73(1–2), 57–61.

      6 Baggerman, T. D., & DeBari, S. M. (2011). The generation of a diverse suite of Late Pleistocene and Holocene basalt through dacite lavas from the northern Cascade arc at Mount Baker, Washington. Contributions to Mineralogy and Petrology, 161(1), 75–99. doi: 10.1007/s00410‐010‐0522‐2

      7 Bali, E., Keppler, H., & Audetat, A. (2012). The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth and Planetary Science Letters, 351–352, 195–207. doi: 10.1016/j.epsl.2012.07.032

      8 Ballhaus, C. (1993). Redox States of Lithospheric and Asthenospheric Upper‐Mantle, Contributions to Mineralogy and Petrology, 114(3), 331–348.

      9 Ballhaus, C., Berry, R. F., & Green, D. H. (1991). High‐pressure experimental calibration of the olivine‐ortho‐pyroxene‐spinel oxygen geobarometer ‐ implications for the oxidation‐state of the upper mantle. Contributions to Mineralogy and Petrology, 107(1), 27–40.

      10 Basaltic Volcanism Study Project. (1981). Basaltic volcanism of the terrestrial planets, New York: Pergamon Press Inc. 1286 pp.

      11 Behn, M. D., & Grove, T. L. (2015). Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness. Journal of Geophysical Research: Solid Earth, 120(7), 4863–4886.

      12 Beier, C., Haase, K. M., & Hansteen, T. H. (2006). Magma evolution of the Sete Cidades volcano, Sao Miguel, Azores. Journal of Petrology, 47(7), 1375–1411. doi: 10.1093/petrology/egl014

      13 Benard, A., Klimm, K., Woodland, A. B., Arculus, R. J., Wilke, M., Botcharnikov, R. E., et al. (2018). Oxidising agents in sub‐arc mantle melts link slab devolatilisation and arc magmas. Nature Communications, 9. doi: 10.1038/s41467‐018‐05804‐2.

      14 Bénard, A., Woodland, A. B., Arculus, R. J., Nebel, O., & McAlpine, S. R. B. (2018). Variation in sub‐arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc. Chemical Geology, 486, 16–30. doi: 10.1016/j.chemgeo.2018.03.004

      15 Berry, A. J., Stewart, G. A., O'Neill, H. S. C., Mallmann, G., & Mosselmans, J. F. W. (2018). A re‐assessment of the oxidation state of iron in MORB glasses. Earth and Planetary Science Letters, 483, 114–123. doi: https://doi.org/10.1016/j.epsl.2017.11.032

      16 Bezos, A., Guivel, G., La, C., Fougeroux, T., & Humler, E. (2021). Unraveling the confusion over the iron oxidation state in MORB glasses. Geochimica et Cosmochimica Acta, 293, 28–39. doi: https://doi.org/10.1016/j.gca.2020.10.004

      17 Bezos, A., & Humler, E. (2005). The Fe3+/Sigma Fe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta, 69(3), 711–725.

      18 Birner, S. K., Cottrell, E., Warren, J. M., Kelley, K. A., & Davis, F. A. (2018). Peridotites and basalts reveal broad congruence between two independent records of mantle fO2 despite local redox heterogeneity. Earth and Planetary Science Letters, 494, 172–189.

      19 Birner, S. K., Warren, J. M., Cottrell, E., Davis, F. A., Kelley, K. A., & Falloon, T. J. (2017). Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. Journal of Petrology, 58(9), 1755–1780.

      20 Bonadiman, C., Beccaluva, L., Coltorti, M., & Siena, F. (2005). Kimberlite‐like metasomatism and ‘garnet signature’in spinel‐peridotite xenoliths from Sal, Cape Verde Archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere? Journal of Petrology, 46(12), 2465–2493.

      21 Bonnin‐Mosbah, M., Simionovici, A. S., Metrich, N., Duraud, J. P., Massare, D., & Dillmann, P. (2001). Iron oxidation states in silicate glass fragments and glass inclusions with a XANES micro‐probe. Journal of Non‐Crystalline Solids, 288(1–3), 103–113.

      22 Borisov, A., Behrens, H., & Holtz, F. (2018). Ferric/ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition. Contributions to Mineralogy and Petrology, 173(12), doi: 10.1007/s00410‐018‐1524‐8

      23 Bowen, N. L., & Schairer, J. F. (1932). The System, FeO‐SiO2, American Journal of Science, 24(141), 177–213.

      24 Brandon, A. D., & Draper, D. S. (1996). Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10), 1739–1749.

      25 Brounce, M., Kelley, K., & Cottrell, E. (2014). Variations in Fe3+/∑ Fe of Mariana arc basalts and mantle wedge fO2. Journal of Petrology, 55(12), 2513–2536.

      26 Brounce,

Скачать книгу