Magma Redox Geochemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 49

Magma Redox Geochemistry - Группа авторов

Скачать книгу

T. L., Till, C. B., & Krawczynski, M. J. (2012). The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40(1), 413–439. doi: 10.1146/annurev‐earth‐042711‐105310

      96 Grove, T. L., Baker, M. B., Price, R. C., Parman, S. W., Elkins‐Tanton, L. T., Chatterjee, N., & Muntener, O. (2005). Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O‐rich mantle melts. Contributions to Mineralogy and Petrology, 148(5), 542–565. doi: 10.1007/s00410‐004‐0619‐6

      97 Gunnarsson, B., Marsh, B. D., & Taylor, H. P. (1998). Generation of Icelandic rhyolites:silicic lavas from Torfajökull central volcano, edited. Journal of Volcanology and Geothermal Research, 83(1–2), 1–45.

      98 Haggerty, S. (1976). Opaque mineral oxides in terrestrial igneous rocks. Oxide Minerals: Short Course Notes, 3, 101–300.

      99 Hartley, M. E., Shorttle, O., Maclennan, J., Moussallam, Y., & Edmonds, M. (2017). Olivine‐hosted melt inclusions as an archive of redox heterogeneity in magmatic systems. Earth and Planetary Science Letters, 479, 192–205. doi: https://doi.org/10.1016/j.epsl.2017.09.029.

      100 Hasse, K. M., Stoffers, P., & Dieter Garbe‐Schönberg, C. (1997). The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near‐ridge hotspot volcanoes in the SE Pacific, edited. Journal of Petrology, 38(6), 785–813.

      101 Hauri, E. H., & Hart, S. R. (1994). Constraints on melt migration from mantle plumes: a trace element study of peridotite xenoliths from Savai'i, Western Samoa. Journal of Geophysical Research: Solid Earth, 99(B12), 24301–24321.

      102 Helz, R., Cottrell, E., Brounce, M. N., & Kelley, K. A. (2017). Olivine‐melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES. Journal of Volcanology and Geothermic Research, 333, 1–14.

      103 Herd, C. D. K. (2008). Basalts as probes of planetary interior redox state. Reviews in Mineralogy and Geochemistry, 68, 527–553.

      104 Hirschmann, M., Withers, A., Ardia, P., & Foley, N. (2012). Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth and Planetary Science Letters, 345, 38–48.

      105 Howe, T. M., Lindsay, J. M., Shane, P., Schmitt, A. K., & Stockli, D. F. (2014). Re‐evaluation of the Roseau Tuff eruptive sequence and other Ignimbrites in Dominica, Lesser Antilles. Journal of Quaternary Science, 29(6), 531–546. doi: 10.1002/jqs.2723

      106 Izbekov, P. E., Eichelberger, J. C., Patino, L. C., Vogel, T. A., & Ivanov, B. V. (2002). Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment. Geology, 30(9), 799–802. doi: 10.1130/0091‐7613(2002)030<0799:ccoppi>2.0.co;2

      107 Janiszewski, H. A., Abers, G. A., Shillington, D. J., & Calkins, J. A. (2013). Crustal structure along the Aleutian island arc: New insights from receiver functions constrained by active‐source data. Geochemistry, Geophysics, Geosystems, 14(8), 2977–2992. doi: 10.1002/ggge.20211

      108 Jayasuriya, K. D., O'Neill, H. S., Berry, A. J., & Campbell, S. J. (2004). A Mossbauer study of the oxidation state of Fe in silicate melts. American Mineralogist, 89(11–12), 1597–1609.

      109 Kelemen, P. B., Yogodzindki, G. M., & Scholl, D. W. (2003). Along‐strike variation in the Aleutian Island Arc: Genesis of high Mg# Andesite and Implications for continental crust. Geophysical Monograph 138, 223–277. doi: 10.1029/138GM11

      110 Kelemen, P. B., Hanghoj, K., & Greene, A. R. (2007). One view of the geochemistry of subduction‐related magmatic arcs, with an emphasis on primitive andesite and lower crust. In Turekian, K., & Holland, H. (eds.) Treatise on Geochemistry, Elsevier Ltd. 1–70.

      111 Kelley, K. A., & Cottrell, E. (2009). Water and the oxidation state of subduction zone magmas. Science, 325(5940), 605–607. doi: 10.1126/science.1174156

      112 Kelley, K. A., & Cottrell, E. (2012). The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329, 109–121. doi: 10.1016/j.epsl.2012.02.010

      113 Kennedy, G. C. (1955). Some aspects of the role of water in rock melts. Geological Society of America Special Paper, 62, 489–504.

      114 Klimm, K., Kohn, S. C., O'Dell, L. A., Botcharnikov, R. E., & Smith, M. E. (2012). The dissolution mechanism of sulphur in hydrous silicate melts. I: Assessment of analytical techniques in determining the sulphur speciation in iron‐free to iron‐poor glasses. Chemical Geology, 322–323, 237–249. doi: 10.1016/j.chemgeo.2012.04.027

      115 Kress, V. C., & Carmichael, I. S. E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82–92.

      116 Krzywinski, M., & Altman, N. (2013). Significance, P values and t‐tests. Nature Methods, 10(11), 1041–1042. doi: 10.1038/nmeth.2698

      117 Kushiro, I. (1972). Effect of water on composition of magmas formed at high pressures. Journal of Petrology, 13(2), 311–334.

      118 Kyser, T. K., O'Neil, J. R., & Carmichael, I. S. E. (1981). Oxygen isotope thermometry of basic lavas and mantle nodules. Contributions to Mineralogy and Petrology, 77(1), 11–23.

      119 Larsen, J. F. (2006). Rhyodacite magma storage conditions prior to the 3430 yBP caldera‐forming eruption of Aniakchak volcano, Alaska. Contributions to Mineralogy and Petrology, 152(4), 523–540. doi: 10.1007/s00410‐006‐0121‐4

      120 Laubier, M., Grove, T. L., & Langmuir, C. H. (2014). Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP‐MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392, 265–278. doi: 10.1016/j.epsl.2014.01.053

      121 Le Voyer, M., Cottrell, E., Kelley, K. A., Brounce, M., & Hauri, E. H. (2015). The effect of primary versus secondary processes on the volatile content of MORB glasses: An example from the equatorial Mid‐Atlantic Ridge (5° N–3° S). Journal of Geophysical Research: Solid Earth, 120(1), 125–144.

      122 Le Voyer, M., Hauri, E. H., Cottrell, E., Kelley, K. A., Salters, V. J. M., Langmuir, C. H., et al. (2018). Carbon fluxes and primary magma CO2 contents along the global mid‐ocean ridge system. Geochemistry, Geophysics, Geosystems, 20(3), 1387–1424. doi: 10.1029/2018GC007630

      123 Lecuyer, C., & Ricard, Y. (1999). Long‐term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth and Planetary Science Letters, 165(2), 197–211.

      124 Lee, C.‐T., Brandon, A. D., & Norman, M. (2003). Vanadium in peridotites as a proxy for paleo‐fO(2) during partial melting: Prospects, limitations, and implications. Geochimica Et Cosmochimica Acta, 67(16), 3045–3064.

      125 Lee, C.‐T., Leeman, W. P., Canil, D., & Li, Z.‐X. A. (2005). Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions. Journal of Petrology, 46(11), 2313–2336. doi: 10.1093/petrology/egi056

      126 Lee, C.‐T. A., Lee, T. C., & Wu, C.‐T. (2013). Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. Geochimica et Cosmochimica

Скачать книгу