Deskriptive Statistik verstehen. Christian FG Schendera
Чтение книги онлайн.
Читать онлайн книгу Deskriptive Statistik verstehen - Christian FG Schendera страница 13
► Exkurs: Besondere Hinweise
■ Rating / Ranking Scales: Bei Ordinalskalen wird zwischen Rating und Ranking Scales unterschieden (Lorenz, 1992, 12ff.). Bei Ranking Scales wird eine diskrete Anzahl von Objekten anhand eines Kriteriums bzw. der Intensität eines Merkmals in eine Rangfolge gebracht. Beispiele für Ranking Scales sind z.B. Ligen (1. Liga, 2. Liga, 3. Liga usw.), Teams (1. Platz, 2. Platz usw.), Spieler (wichtigster Spieler, MVP). Bei Rating Scales wird anhand einer Berechnungsvorschrift eine Prüfung und Bewertung („Rating“) vorgenommen und ein Punktwert vergeben, der letztlich über den Rang entscheidet. Beispiele für Rating Scales sind z.B. Ratings von Finanzprodukten („AAA“, „AA+“, „AA“ usw. (z.B. Standard & Poor’s), Bonität von Schuldnern („uneingeschränkt kreditwürdig“, „eingeschränkt kreditwürdig“, „nicht kreditwürdig“, Schulnoten („sehr gut“, „gut“ etc.), Zustimmung („sehr“, „überwiegend“ usw.).
■ Mathematische Transformationen I: Differenzen? Bei Ordinalskalen ist man oft bereits versucht, mathematische Operationen, wie z.B. Differenzen, zu bilden. Nehmen wir der Plakativität halber an, wir wollen zwischen den Rängen „Champions League (CL) Teilnahme“ und „UEFA Cup“ eine mathematische Differenz gemäß der Logik B – A = C bilden? Ja! wird jemand rufen, in der CL geht es um mehr Geld! Die Differenz ist sozusagen der Unterschied im (auch!) materiellen Anreiz. Leider nein, muss man dem entgegenhalten: Denn: Mit diesem Einwand wurde flugs die Einheit der Differenz gewechselt: Waren es in der ursprünglichen Formulierung unterschiedlich bedeutsame sportliche Erfolge, wechselt der Einwand auf eine monetäre Einheit, z.B. Euro, und diese sind mindestens auf dem Intervallniveau (auf denen tatsächliche Differenzen zulässig sind). Eine Differenz aus zwei ordinalen, qualitativ verschiedenen Rängen zu bilden, ist üblicherweise sehr sehr schwierig herzuleiten bzw. zu interpretieren. Ein Sinn einer mathematischen Differenz aus den ordinalen Rängen „Champions League (CL) Teilnahme“ und „UEFA Cup“ erschließt sich z.B. nicht.
■ Mathematische Transformationen II: Quotienten? Zulässige Operationen sind f (Anzahl, frequency) bzw. Prozentanteile. Aus mathematischer Sicht sind bei der Ordinalskala nur mathematische Transformationen zulässig, die nicht die Abfolge der bezeichneten Objekte ändern. Die Bildung von Differenzen, Quotienten, Summen oder Mittelwerten mittels Ordinalskalen ist methodisch gesehen nicht sinnvoll und kann u.U. sogar irreführend sein. Dazu ein kleines Beispiel mit Schulnoten (ja, Schulnoten sind auf der Ordinalskala!) von vier Schüler-Innen A, B, C und D: Haben A und D dieselbe Schulnote, z.B. „1“ [„sehr gut“], so haben sie auch dieselbe Leistung gezeigt (gleiche Zahl = gleiche Qualität [auf derselben Stufe]). Hat B z.B. „2“ [„gut“], eine kleinere Schulnote wie C, „3“ [„befriedigend“], so hat B eine bessere als C gezeigt (ungleiche Zahlen = Qualität in unterschiedlichen Abstufungen; je kleiner die Zahl, desto besser die Qualität). Wird versucht, aus den qualitativen Rangurteilen eine Differenz zu bilden, z.B. „sehr gut“ – „gut“ bzw. „gut“ – „befriedigend“, so ist es nicht möglich, eine Aussage über den präzisen Leistungsunterschied abzuleiten (keine Differenz möglich; dies würde Äquidistanz voraussetzen). Daraus folgt, dass auch nicht gesagt werden kann, dass ein „sehr gut“ doppelt so gut ist wie ein „gut“ oder sogar dreimal so gut wie ein „befriedigend“ (kein Quotient möglich). Werden für A, B, C und D anhand von Kodes die Leistungsunterschiede ermittelt, so beging man oft eine unzulässige Informationsanreicherung der Messskala. Diese Diskussion wird bei den „Kodes“ fortgesetzt.
■ Kodierungen I: Numerisch: Für die Kodierung der Ausprägungen von Ratingskalen, z.B. Schulnoten („sehr gut“, „gut“, usw.), Zustimmung („sehr“, „überwiegend“, usw.) oder Zutreffen („trifft sehr zu“, „trifft zu“ usw.), werden üblicherweise Zahlen vergeben (meist 1 bis 4 bzw. 6, je nach Rangskala). Das Problem der zugewiesenen numerischen Skala ist, dass sie meist über regelmäßige Abstände verfügt. Das gilt auch für scheinbar alternative Kodierungen, wie z.B. 2, 4, 6 usw., 10, 20, 30 usw. oder auch 11, 12, 13 usw. In allen Fällen wurde die original „qualitative“ Ordinalskala unzulässigerweise um die Information der Äquidistanz angereichert. Das Problem ist: Diese Kodierungen suggerieren, dass die Abstände zwischen den quantitativen Stufen (1, 2, 3, usw.) exakt gleich sind, obwohl sie es faktisch nicht sind („sehr gut“, „gut“, „befriedigend“ usw.). Die Methodenforschung bemüht sich zwar um den Nachweis, dass sich Skalen mit wenigen qualitativen Rängen in etwa den Abständen zwischen den quantitativen Stufen annähern. Als eine echte Lösung des Problems von Ordinalskalen erschließt sich dies jedoch nicht. Unkonventionellere Kodierungen (wie z.B. 1, 8, 13, 27) zu wählen, ist ebenfalls keine befriedigende Lösung, weil die jeweils gewählte quantitative Kodierung außerdem einen Einfluss auf die erzielten Statistiken haben kann. Wenn Mittelwerte unbedingt mit Ordinaldaten berechnet werden müssen (was z.B. oft Auswertungsmanuale psychometrischer Skalen verlangen), so sollte zumindest der Effekt verschiedener Kodierungen überprüft und ausgeschlossen werden.
■ Kodierungen II: String / Text: Ränge können auch direkt, alphanumerisch, als Text an die Software übergeben werden. In diesem Falle sollten Text-Rangfolgen auf mögliche Sortierfehler geprüft werden. Korrekt und konsistent wäre z.B. eine Text-Rangfolge wie z.B. „klein“, „mittel“ oder „riesig“ (konsistente Rangreihe: k < m < r). Inkorrekt, weil inkonsistent, wäre z.B. eine Text-Rangfolge wie z.B. „schwach“, „mittel“ oder „stark“ (inkonsistente Rangreihe: s > m < s).
Exkurs ◄
Vermeiden Sie alphanumerische Kodierungen, z.B. von Bewertungen („schwach“, „mittel“, „stark“ oder „high“, „average“ und „low“) oder z.B. von Monaten (z.B. „Jan“, „Feb“, „Mar“ usw.) oder Jahreszeiten („Frühling“, „Sommer“ usw.). Alphanumerisch sortiert würde z.B. „mittel“ zwischen „schwach“ und „stark“, „high“ zwischen „average“ und „low“, „Apr“ vor „Feb“ oder auch der „Herbst“ vor „Sommer“ usw. sortiert werden.
Ordinalskalierte Variablen erlauben im Gegensatz zu nominal skalierten Variablen schon Aussagen i.S.v. größer oder kleiner, aber das um wie viel besser, größer, stärker oder intensiver kann erst ab dem Intervallskalenniveau numerisch, also quantitativ, ausgedrückt wiedergegeben werden.
Ordinaldaten sind heikel für die deskriptive Statistik (und nicht nur dort). Die Empfehlung ist, sofern möglich, Daten für u.a. Differenz- oder Mittelwerte nur ab Intervallskalenniveau zu erheben (damit wäre eine Mittelwertbildung zulässig).
2.3.3 Intervallskala
Während die Abstände der einzelnen Ränge also bei Ordinalskalen noch nicht gleich sind,