Ingenieurholzbau. Werner Seim
Чтение книги онлайн.
Читать онлайн книгу Ingenieurholzbau - Werner Seim страница 7
Es ist immer wieder erstaunlich, wie elegant und ökonomisch Holztragwerke konzipiert und umgesetzt werden können. Und das bei einem Werkstoff, der den Wachstumsbedingungen in der Natur unterliegt und dadurch erhebliche Unregelmäßigkeiten und ausgeprägte anisotrope Festigkeitseigenschaften aufweist. Die ingenieurtechnische Beherrschung dieser Besonderheiten erfolgt auf der Grundlage von ganz unterschiedlichen theoretischen Ansätzen. Diese stammen aus verschiedenen wissenschaftlichen Disziplinen und wurden für die Fragestellungen des Holzbaus adaptiert. Bei manchen Bemessungsregeln – so z. B. bei den sogenannten ,,Johansen- Formeln“ – sind diese Grundlagen gut nachvollziehbar. Andere normative Regelungen verwenden Formulierungen mit dimensionsgebundenen Beiwerten, deren Herleitung ohne aufwendige Recherche nicht mehr nachvollziehbar ist. In den folgenden Abschnitten werden die wichtigsten theoretischen Grundlagen, welche bei gewöhnlichen Bemessungsaufgaben im Holzbau eine Rolle spielen, erläutert und es wird die Anwendung mit Bezug zum jeweiligen Ingenieurmodell erklärt.
1.1 Festigkeiten und Maßstabseffekt
Die Festigkeiten des Holzes hängen von der Dichte, von der Faserstruktur und von den wuchsbedingten Unregelmäßigkeiten ab. Eine besondere Bedeutung haben in diesem Zusammenhang die Äste. Dieser Einfluss wiederum hängt von der Art der Belastung ab: Bei Zug wird der Ast zur Fehlstelle, bei Druck wird der lineare Lastfiuss gestört (siehe Band 1, Abschn. 1.2.2). Bei einer Biegebeanspruchung, wo nun gleichzeitig Druck- und Zugspannungen auftreten, hängt der Einfluss eines Astes nicht nur von dessen Größe, sondern ganz entscheidend von seiner Lage ab. Dies wird in Abb. 1.1 veranschaulicht: Aufgrund der Äste ist die Zugtragfähigkeit des Kantholzes im Vergleich zu einer ungestörten, astfreien Probe erheblich reduziert, und zwar mehr oder weniger unabhängig von der Lage des Astes. Im Gegensatz dazu haben Äste nur dann einen Einfluss auf die Biegetragfähigkeit, wenn diese im Bereich des maximalen Biegemoments am zugbeanspruchten Rand liegen. Das ist eine Situation, die eher selten auftritt. Zusätzlich und unabhängig von diesen statistischen Betrachtungen ist auf der Druckseite des biegebeanspruchten Querschnitts ein gewisser Plastifizierungseffekt möglich.
Abb. 1.1 Kantholz mit Ästen: (a) zugbeansprucht, (b) biegebeansprucht und (c) Spannungsverlauf zur Biegebeanspruchung.
Abb. 1.2 (a) Statistische Verteilung unterschiedlicher Festigkeiten von Nadelholz nach Hansson und Thelandersson (2003) und (b) Zugstab mit n Teilabschnitten gleicher Länge.
Die Biegefestigkeit des Holzes ist somit ein eigenständiger Materialkennwert, der höher liegt als die Zugfestigkeit. Dies konnte in der Vergangenheit durch umfangreiche statistische Auswertungen von Versuchen unter Druck-, Zug- und Biegebeanspruchung gezeigt werden (siehe Abb. 1.2a) und spiegelt sich in den normativen Regelungen wider.
Bei der Festlegung von Zug- und Biegefestigkeiten spielt die statistische Verteilung der Äste als Fehlstellen eine entscheidende Rolle. Das betrifft sowohl die Größe des einzelnen Astes als auch seine Lage bezogen auf die Länge des Trägers und die Querschnittshöhe. Zur Beschreibung dieser Effekte wird gerne eine auf Waloddi Weibull (1887–1979) zurückgehende Formulierung verwendet, die auf der Theorie des schwächsten Gliedes einer Kette aufbaut. Diese Betrachtungsweise ist für spröde Versagensarten naheliegend. Abbildung 1.2b veranschaulicht dies für einen Zugstab. Geht man davon aus, dass die Versagenswahrscheinlichkeit für jeden Teilabschnitt i durch dieselbe Verteilungsfunktion F(σ) des Festigkeitswertes σ bestimmt wird:
(1.1)
dann ist die Überlebenswahrscheinlichkeit:
(1.2)
Die Überlebenswahrscheinlichkeit des Stabes mit n Teilabschnitten ist das Produkt der Überlebenswahrscheinlichkeiten der einzelnen Abschnitte:
(1.3)
(1.4)
Somit ergibt sich die Versagenswahrscheinlichkeit des Stabes zu
(1.5)
Da die Werte F(σ) sehr klein sind, kann der Ausdruck vereinfacht werden zu
(1.6)
Für die statistische Verteilung der Festigkeit im unteren Bereich wird nun eine Exponentialfunktion mit
(1.7)
verwendet. Die beiden Parameter m und k charakterisieren die Form der Verteilungsfunktion und werden aus der Auswertung von Versuchsdaten gewonnen. Zusätzlich erfolgt ein Übergang von n Teilabschnitten zum Integral über das Stabvolumen V:
(1.8)
Geht man davon aus, dass als unterer Grenzwert der Festigkeit σ0 = 0 eingesetzt werden kann, dann beträgt die Versagenswahrscheinlichkeit bei konstanter Spannung innerhalb des Volumens V
(1.9)
d. h. die Versagenswahrscheinlichkeit hängt somit von der Spannung im Bauteil und von seinem Volumen ab sowie von den aus der statistischen Auswertung von Versuchen gewonnenen Parametern m und k. Einen guten Überblick zu diesem Verfahren gibt Isaksson (2003).
Im Rahmen der Weibull-Theorie geht man davon aus, dass die Formparameter m und k unabhängig vom Volumen der Versuchskörper sind. Damit können für zwei unterschiedliche Volumen V 1 und V 2 die zugehörigen Festigkeiten σ1 und σ2 ins Verhältnis gesetzt werden, mit der Bedingung, dass die Versagenswahrscheinlichkeit in beiden Fällen gleich groß sein soll:
(1.10)
(1.11)
(1.12)
Auf diese Formulierung wird im EC5 an zwei Stellen zurückgegriffen: