Wetland Carbon and Environmental Management. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Wetland Carbon and Environmental Management - Группа авторов страница 65
366 Roden, E. E., & Wetzel, R. G. (1996). Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnology and Oceanography, 41(8), 1733–1748. https://doi.org/10.4319/lo.1996.41.8.1733
367 Roslev, P., & King, G. M. (1996). Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology, 19(2), 105–115. https://doi.org/10.1016/0168‐6496(95)00084‐4
368 Roychoudhury, A. N., Kostka, J. E., & Van Cappellen, P. (2003). Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science, 57(5–6), 1183–1193. https://doi.org/10.1016/S0272‐7714(03)00058‐1
369 Rozsa, R. (1995). Human impacts on tidal wetlands: History and regulations. In G. D. Dreyer & W. A. Niering (Eds.), Tidal Marshes of Long Island Sound: Ecology, History, and Restoration (pp. 42–50). New London, CT: Connecticut College Arboretum.
370 Rudolph, H., & Samland, J. (1985). Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry, 24(4), 745–749. https://doi.org/10.1016/S0031‐9422(00)84888‐8
371 Sabine, C. L., Heimann, M., Artaxo, P., Bakker, D. C. E., Chen, C.‐T. A., Field, C. B., et al. (2004). Current status and past trends of the global carbon cycle. In: C. B. Field & M. R. Raupach (Eds.), Global carbon cycle: Integrating humans, climate, and the natural world (pp. 17–44). Washington, D.C.: Island Press.
372 Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25, 4291–4302. https://doi.org/10.1111/gcb.14774
373 Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). The global methane budget 2000–2012. Earth System Science Data, 8(2), 697–751. https://doi.org/10.5194/essd‐8‐697‐2016
374 Schindler, D. W., Curtis, P. J., Parker, B. R., & Stainton, M. P. (1996). Consequences of climate warming and lake acidification for UV‐B penetration in North American boreal lakes. Nature, 379(6567), 705–708. https://doi.org/10.1038/379705a0
375 Schippers, A., & Jørgensen, B. B. (2002). Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66(1), 85–92.
376 Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386
377 Segarra, K. E. A., Comerford, C., Slaughter, J., & Joye, S. B. (2013). Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica et Cosmochimica Acta, 115, 15–30. https://doi.org/10.1016/j.gca.2013.03.029
378 Segarra, K. E. A., Schubotz, F., Samarkin, V. A., Yoshinaga, M. Y., Hinrichs, K. U., & Joye, S. B. (2015). High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 6(May), 1–8. https://doi.org/10.1038/ncomms8477
379 Segers, R. (1998). Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23–51. https://doi.org/10.1023/A:1005929032764
380 Selvam, B. P., Lapierre, J. F., Guillemette, F., Voigt, C., Lamprecht, R. E., Biasi, C., et al. (2017). Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Scientific Reports, 7, 1–9. https://doi.org/10.1038/srep45811
381 Shibata, H., Petrone, K. C., Hinzman, L. D., & Boone, R. D. (2003). Effect of fire on dissolved organic carbon and inorganic solutes in spruce forest in the permafrost region of interior Alaska. Soil Science and Plant Nutrition, 49(1), 25–29. https://doi.org/10.1080/00380768.2003.10409975
382 Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A., & Twilley, R. R. (2016). Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 43, 1149–1157. https://doi.org/10.1002/2015GL067388
383 Shuttleworth, E. L., Evans, M. G., Hutchinson, S. M., & Rothwell, J. J. (2015). Peatland restoration: Controls on sediment production and reductions in carbon and pollutant export. Earth Surface Processes and Landforms, 40(4), 459–472. https://doi.org/10.1002/esp.3645
384 Silliman, B. R., Van De Koppel, J., McCoy, M. W., Diller, J., Kasozi, G. N., Earl, K., et al. (2012). Degradation and resilience in Louisiana salt marshes after the BP‐Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11234–11239. https://doi.org/10.1073/pnas.1204922109
385 Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangrove drivers or buffers of coastal acidification? Global Biogeochemical Cycles, (Dic), 753–766. https://doi.org/10.1002/2015GB005324
386 Sippo, J. Z., Maher, D. T., Schulz, K. G., Sanders, C. J., McMahon, A., Tucker, J., & Santos, I. R. (2019). Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochimica et Cosmochimica Acta, 253, 142–158. https://doi.org/10.1016/j.gca.2019.03.003
387 Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Tørseth, K., Høgåsen, T., Bowman, J., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990‐2001. Environmental Pollution, 137(1), 165–176. https://doi.org/10.1016/j.envpol.2004.12.023
388 Smemo, K. A., & Yavitt, J. B. (2007). Evidence for anaerobic CH4 oxidation in freshwater peatlands. Geomicrobiology Journal, 24(7–8), 583–597. https://doi.org/10.1080/01490450701672083
389 Smemo, K. A., & Yavitt, J. B. (2011). Anaerobic oxidation of methane: an underappreciated