Wetland Carbon and Environmental Management. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Wetland Carbon and Environmental Management - Группа авторов страница 66
391 Smith, S. M., & Green, C. W. (2013). Sediment suspension and elevation loss triggered by Atlantic mud fiddler crab (Uca pugnax) bioturbation in salt marsh dieback areas of southern New England. Journal of Coastal Research, 31(1), 88. https://doi.org/10.2112/jcoastres‐d‐12‐00260.1
392 Smith, S. M., Newman, S., Garrett, P. B., & Leeds, J. A. (2001). Differential effects of surface and peat fire on soil constituents in a degraded wetland of the northern Florida Everglades. Journal of Environmental Quality, 30, 1998–2005. https://doi.org/10.2134/jeq2001.1998
393 Smith, T. J., & Odum, W. E. (1981). The effects of grazing by snow geese on coastal salt marshes. Ecology, 62(1), 98–106. https://doi.org/10.2307/1936673
394 Smyth, A. R., Loecke, T. D., Franz, T. E., & Burgin, A. J. (2019). Using high‐frequency soil oxygen sensors to predict greenhouse gas emissions from wetlands. Soil Biology and Biochemistry, 128(July 2018), 182–192. https://doi.org/10.1016/j.soilbio.2018.10.020
395 Song, C., Liu, D., Yang, G., Song, Y., & Mao, R. (2011). Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China. Ecological Engineering, 37(10), 1578–1582. https://doi.org/10.1016/j.ecoleng.2011.03.036
396 Sørensen, J., Christensen, D., & Jørgensen, B. B. (1981). Volatile fatty acids and hydrogen as substrates for sulfate‐reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology, 42(1), 5–11. https://doi.org/10.1128/aem.42.1.5‐11.1981
397 Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A., & Hopkinson, C. S. (2019). Global‐change controls on soil‐carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12(9), 685–692. https://doi.org/10.1038/s41561‐019‐0435‐2
398 Stanley, K. M., Heppell, C. M., Belyea, L. R., Baird, A. J., & Field, R. H. (2019). The importance of CH4 ebullition in floodplain fens. Journal of Geophysical Research: Biogeosciences, 124(7), 1750–1763. https://doi.org/10.1029/2018JG004902
399 Stephens, J. C., Allen Jr., L. H., & Chen, E. (1984). Organic soil subsidence. In: T. L. Holzer (Ed.), Man‐Induced Land Subsidence. Reviews in Engineering Geology Vol 6 (pp. 107–122). Boulder, Colorado: Geological Society of America.
400 Sterner, R. W., & Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, New Jersey: Princeton University Press. https://doi.org/10.1515/9781400885695
401 Strack, M., Waddington, J. M., Bourbonniere, R. A., Buckton, E. L., Shaw, K., Whittington, P., & Price, J. S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes, 22(17), 3373–3385. https://doi.org/10.1002/hyp
402 Straub, K. L., Benz, M., & Schink, B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186. https://doi.org/10.1111/j.1574‐6941.2001.tb00768.x
403 Streever, W. J. (2000). Spartina alterniflora marshes on dredged material: A critical review of the ongoing debate over success. Wetlands Ecology and Management, 8(5), 295–316. https://doi.org/10.1023/A:1008483203083
404 Sutter, L. A., Perry, J. E., & Chambers, R. M. (2014). Tidal freshwater marsh plant responses to low level salinity increases. Wetlands, 34(1), 167–175. https://doi.org/10.1007/s13157‐013‐0494‐x
405 Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39(23), 9009–9015. https://doi.org/10.1021/es050778q
406 Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K., & Friess, D. A. (2020). Climate change mitigation potential of wetlands and the cost‐effectiveness of their restoration. Interface Focus, 10, 20190129.
407 Tan, L., Ge, Z., Zhou, X., Li, S., Li, X., & Tang, J. (2020). Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta‐analysis. Global Change Biology, 26(3), 1638–1653. https://doi.org/10.1111/gcb.14933
408 Thormann, M. N. (2006). Diversity and function of fungi in peatlands: A carbon cycling perspective. Canadian Journal of Soil Science, 86, 281–293. https://doi.org/10.4141/S05‐082
409 Thormann, M. N., & Bayley, S. E. (1997). Response of aboveground net primary plant production to nitrogen and phosphorus fertilization in peatlands in southern boreal Alberta, Canada. Wetlands, 17(4), 502–512. https://doi.org/10.1007/BF03161516
410 Tobias, C. R., & Neubauer, S. C. (2019). Salt marsh biogeochemistry: An overview. In G. M. E. Perillo, E. Wolanski, D. R. Cahoon, & C. S. Hopkinson (Eds.), Coastal wetlands: An integrated ecological approach (2nd ed., pp. 539–596). Cambridge, MA: Elsevier. https://doi.org/10.1016/B978‐0‐444‐63893‐9.00016‐2539
411 Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., & Hatano, R. (2007). Falling atmospheric pressure as a trigger for methane ebullition from peatland. Global Biogeochemical Cycles, 21(2), 1–8. https://doi.org/10.1029/2006GB002790
412 Tolhurst, T. J., Friend, P. L., Watts, C., Wakefield, R., Black, K. S., & Paterson, D. M. (2006). The effects of rain on the erosion threshold of intertidal cohesive sediments. Aquatic Ecology, 40(4), 533–541. https://doi.org/10.1007/s10452‐004‐8058‐z
413 Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. Nature, 389, 170–173. https://doi.org/10.1038/38260
414 Treat, C. C., Wollheim, W. M., Varner, R. K., Grandy, A. S., Talbot, J., & Frolking, S. (2014). Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Global Change Biology, 20(8), 2674–2686. https://doi.org/10.1111/gcb.12572
415 Tully,