Wetland Carbon and Environmental Management. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Wetland Carbon and Environmental Management - Группа авторов страница 64

Wetland Carbon and Environmental Management - Группа авторов

Скачать книгу

J., Verhoeven, J. T. A., Butterbach‐Bahl, K., Dise, N. B., Ullah, S., Aasa, A., et al. (2018). Nitrogen‐rich organic soils under warm well‐drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9(1), 1–8. https://doi.org/10.1038/s41467‐018‐03540‐1

      341 Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D. S., Weier, K., & Kulmala, A. E. (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochemical Cycles, 10, 401–412. https://doi.org/10.1029/96GB01455

      342 Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C., Weishampel, P., & Dewey, B. (2003). Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos, 100(2), 380–386. https://doi.org/10.1034/j.1600‐0706.2003.11774.x

      343 Pawson, R. R., Evans, M. G., & Allott, T. E. H. A. (2012). Fluvial carbon flux from headwater peatland streams: Significance of particulate carbon flux. Earth Surface Processes and Landforms, 37(11), 1203–1212. https://doi.org/10.1002/esp.3257

      344 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One, 7(9), e43542. https://doi.org/10.1371/journal.pone.0043542

      345 Petrescu, A. M. R., Lohila, A., Tuovinen, J.‐P., Baldocchi, D. D., Desai, A. R., Roulet, N. T., et al. (2015). The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences, 112(15), 4594–4599. https://doi.org/10.1073/pnas.1416267112

      346 Petrone, K. C., Hinzman, L. D., Shibata, H., Jones, J. B., & Boone, R. D. (2007). The influence of fire and permafrost on sub‐arctic stream chemistry during storms. Hydrological Processes, 21, 423–434. https://doi.org/10.1002/hyp.6247

      347 Petrone, R. M., Waddington, J. M., & Price, J. S. (2003). Ecosystem‐scale flux of CO2 from a restored vacuum harvested peatland. Wetlands Ecology and Management, 11(6), 419–432. https://doi.org/10.1023/B:WETL.0000007192.78408.62

      348 Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5), 831–842. https://doi.org/10.1007/s13157‐011‐0197‐0

      349 Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., & Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43, 6276–6284. https://doi.org/10.1002/2016GL068782

      350 Pracht, L. E., Tfaily, M. M., Ardissono, R. J., & Neumann, R. B. (2018). Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: Tracking carbon compositional change during microbial utilization. Biogeosciences, 15(6), 1733–1747. https://doi.org/10.5194/bg‐15‐1733‐2018

      351 Prananto, J. A., Minasny, B., Comeau, L., Rudiyanto, R., & Grace, P. (2020). Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biology, 26(8), 4583–4600. https://doi.org/10.1111/gcb.15147

      352 Pschenyckyj, C. M., Clark, J. M., Shaw, L. J., Griffiths, R. I., & Evans, C. D. (2020). Effects of acidity on dissolved organic carbon in organic soil extracts, pore water and surface litters. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.135585

      353 Raghoebarsing, A. A., Pol, A., Van De Pas‐Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921. https://doi.org/10.1038/nature04617

      354 Randerson, J. T., Masiello, C. A., Still, C. J., Rahn, T., Poorter, H., & Field, C. B. (2006). Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Global Change Biology, 12(2), 260–271. https://doi.org/10.1111/j.1365‐2486.2006.01099.x

      355 Raymond, P. A., & Hopkinson, C. S. (2003). Ecosystem modulation of dissolved carbon age in a temperate marsh‐dominated estuary. Ecosystems, 2003(6), 694–705. https://doi.org/10.1007/s10021‐002‐0213‐6

      356 Raymond, P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B., & Petsch, S. T. (2004). Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Marine Chemistry, 92(1‐4 Spec. Iss.), 353–366. https://doi.org/10.1016/j.marchem.2004.06.036

      357 Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of Wetlands: Science and Applications. Boca Raton, FL: CRC Press.

      358 Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597–607. https://doi.org/10.1038/ngeo1830

      359 Reid, M. C., Tripathee, R., Schäfer, K. V. R., & Jaffé, P. R. (2013). Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research: Biogeosciences, 118(4), 1802–1813. https://doi.org/10.1002/2013JG002438

      360 Rejmánková, E., & Houdková, K. (2006). Wetland plant decomposition under different nutrient conditions: What is more important, litter quality or site quality? Biogeochemistry, 80(3), 245–262. https://doi.org/10.1007/s10533‐006‐9021‐y

      361 Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000‐2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113

      362 Richardson, C. J. (2003). Pocosins: Hydrologically isolated or integrated wetlands on the landscape? Wetlands, 23(3), 563–576. https://doi.org/10.1672/0277‐5212(2003)023[0563:PHIOIW]2.0.CO;2

      363  Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., & Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 6416(1991), 6413–6416.

      364 Riedel, T., Zak, D., Biester, H., & Dittmar, T. (2013). Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proceedings of the National

Скачать книгу