Industry 4.1. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Industry 4.1 - Группа авторов страница 42
3 3Ghosh, N., Ravi, Y.B., Patra, A. et al. (2007). Estimation of tool wear during CNC milling using neural network‐based sensor fusion. Mechanical Systems and Signal Processing 21 (1): 466–479. https://doi.org/10.1016/j.ymssp.2005.10.010.
4 4Abuthakeer, S.S., Mohanram, P.V., and Kumar, G.M. (2011). Prediction and control of cutting tool vibration CNC lathe with ANOVA and ANN. International Journal of Lean Thinking 2 (1): 1–23.
5 5Tieng, H., Li, Y.Y., Tseng, K.P. et al. (2020). An Automated Dynamic‐Balancing‐Inspection Scheme for Wheel Machining. IEEE Robotics and Automation Letters 5 (4): 2224–2231. https://doi.org/10.1109/LRA.2020.2970953.
6 6Abellan‐Nebot, J.V. and Subirón, F.R. (2010). A review of machining monitoring systems based on artificial intelligence process models. The International Journal of Advanced Manufacturing Technology 47 (14): 237–257. https://doi.org/10.1007/s00170‐009‐2191‐8.
7 7Teti, R., Jemielniak, K., O’Donnell, G. et al. (2010). Advanced monitoring of machining operations. CIRP Annals 59 (2): 717–739. https://doi.org/10.1016/j.cirp.2010.05.010.
8 8Yang, H.C., Tieng, H., and Cheng, F.T. (2015). Total precision inspection of machine tools with virtual metrology. Journal of the Chinese Institute of Engineers 39 (2): 221–235. https://doi.org/10.1109/CoASE.2015.7294301.
9 9Mallat, S.G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (7): 674–693. https://doi.org/10.1109/34.192463.
10 10Zhang, Z., Wang, Y., and Wang, K. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. Journal of Intelligent Manufacturing 24: 1213–1227. https://doi.org/10.1007/s10845‐012‐0657‐2.
11 11Kim, J., Lee, H., Jeon, J.W. et al. (2020). Stacked auto‐encoder based CNC tool diagnosis using discrete wavelet transform feature extraction. Processes 8 (4): 456. https://doi.org/10.3390/pr8040456.
12 12Jiang, G., He, H., Xie, P. et al. (2017). Stacked multilevel‐denoising autoencoders: a new representation learning approach for wind turbine gearbox fault diagnosis. IEEE Transactions on Instrumentation and Measurement 66 (9): 2391–2402. https://doi.org/10.1109/TIM.2017.2698738.
13 13Lee, R.J. and Nicewander, W.A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician 42 (1): 59–66. https://doi.org/10.1080/00031305.1988.10475524.
14 14Strang, G. (1994). Wavelets. American Scientist 82 (3): 250–255.
15 15Belinsky, A.V.E. and Lapshin, V.B. (2017). The uncertainty principle and measurement accuracy. Physics‐Uspekhi 60 (3): 325–326. https://doi.org/10.3367/UFNe.2017.02.038069.
16 16Yen, G.G. and Lin, K.C. (2000). Wavelet packet feature extraction for vibration monitoring. IEEE Transactions on Industrial Electronics 47 (3): 650–667. https://ieeexplore.ieee.org/document/847906.
17 17Yang, H.C. (2020). Strain data collected from machine tool. https://ieee‐dataport.org/documents/strain‐data‐collected‐machine‐tool (accessed 26 October 2020).
18 18Yang, H.C. (2020). Signal segmentation for milling process. https://ieee‐dataport.org/open‐access/signal‐segmentation‐milling‐process (accessed 6 November 2020).
19 19Yang, H.C. (2020). Roughness of milling process. https://ieee‐dataport.org/open‐access/roughness‐milling‐process (accessed 6 November 2020).
20 20Yang, H.C. (2020). Cold forging process failures. https://ieee‐dataport.org/open‐access/cold‐forging‐process‐failures (accessed 5 November 2020).
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.