Philosophical Foundations of Neuroscience. P. M. S. Hacker

Чтение книги онлайн.

Читать онлайн книгу Philosophical Foundations of Neuroscience - P. M. S. Hacker страница 36

Philosophical Foundations of Neuroscience - P. M. S. Hacker

Скачать книгу

mechanical pain stimulation: a time-resolved FMRI study’, Cerebral Cortex, 24, no. 11 (2014), pp. 2991–3005; J. Gonzalez-Castillo, Z. S. Saad, D. A. Handwerker, S. J. Inati, N. Brenowitz and P. A. Bandettini, ‘Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis’, Proceedings of the National Academy of Sciences of the United States of America, 109, no. 14 (2012), pp. 5487–92; J. W. Ibinson and K. M. Vogt, ‘Pain does not follow the boxcar model: temporal dynamics of the BOLD fMRI signal during constant current painful electric nerve stimulation’, Journal of Pain, 14, no. 12 (2013), pp. 1611–19.

      103 103 M. R. Bennett, L. Farnell and W. G. Gibson, ‘Quantitative relations between transient BOLD responses, cortical energetics, and impulse firing in different cortical regions’, Journal of Neurophysiology, 122, no. 3 (2019), pp. 1226–37.

      104 104 N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman and F. Hyder, ‘Energetics of neuronal signaling and fMRI activity’, Proceedings of the National Academy of Sciences of the United States of America, 104, no. 51 (2007), pp. 20546–51; A. J. Smith, H. Blumenfeld, K. L. Behar, D. L. Rothman, R. G. Shulman and F. Hyder, ‘Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI’, Proceedings of the National Academy of Sciences of the United States of America, 99, no. 16 (2002), pp. 10765–70.

      105 105 M. R. Bennett, L. Farnell and W. G. Gibson, ‘Quantitative relations between BOLD responses, cortical energetics, and impulse firing’, Journal of Neurophysiology, 119, no. 3 (2018), pp. 979–89.

      106 106 F. Hyder, R. K. Fulbright, R. G. Shulman and D. L. Rothman, ‘Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy’, Journal of Cerebral Blood Flow & Metabolism, 33, no. 3 (2013), pp. 339–47; F. Hyder, D. L. Rothman and M. R. Bennett, ‘Cortical energy demands of signaling and non-signaling components in brain are conserved across mammalian species and activity levels’, Proceedings of the National Academy of Sciences of the United States of America, 110, no. 9 (2013), pp. 3549–54.

      107 107 M. T. Alkire, ‘Loss of effective connectivity during general anesthesia’, International Anesthesiology Clinics, 46, no. 3 (2008), pp. 55–73; idem, ‘Probing the mind: anesthesia and neuroimaging’, Clinical Pharmacology & Therapeutics, 84, no. 1 (2008), pp. 149–52; Hyder, Fulbright, Shulman and Rothman, ‘Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy’.

      108 108 R. M. Birn, J. B. Diamond, M. A. Smith and P. A. Bandettini, ‘Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI’, Neuroimage, 31, no. 4 (2006), pp. 1536–48; R. G. Wise, K. Ide, M. J. Poulin and I. Tracey, ‘Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal’, Neuroimage, 21, no. 4 (2004), pp. 1652–64.

      109 109 G. K. Aguirre, E. Zarahn and M. D’Esposito, ‘The inferential impact of global signal covariates in functional neuroimaging analyses’, Neuroimage, 8, no. 3 (1998), pp. 302–6; P. M. Macey, K. E. Macey, R. Kumar and R. M. Harper, ‘A method for removal of global effects from fMRI time series’, Neuroimage, 22, no. 1 (2004), pp. 360–6.

      110 110 K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones and P. A. Bandettini, ‘The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?’ Neuroimage, 44, no. 3 (2009), pp. 893–905;M. D. Fox, D. Zhang, A. Z. Snyder and M. E. Raichle, ‘The global signal and observed anticorrelated resting state brain networks’, Journal of Neurophysiology, 101, no. 6 (2009), pp. 3270–83.

      111 111 K. Murphy and M. D. Fox, ‘Towards a consensus regarding global signal regression for resting state functional connectivity MRI’, Neuroimage, 154 (2017), pp. 169–73.

      112 112 M. L. Schölvinck, A Maier, F. Q. Ye, J. H. Duyn and D. A. Leopold, ‘Neural basis of global resting-state fMRI activity’, Proceedings of the National Academy of Sciences of the United States of America, 107, no. 22 (2010), pp. 10238–43; C. W. Wong, P. N. DeYoung and T. T. Liu, ‘Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance’, Neuroimage, 124, Pt A (2016), pp. 24–31; C. W. Wong, V. Olafsson, O. Tal and T. T. Liu, ‘The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures’, Neuroimage, 83 (2013), pp. 983–90; C. W. Wong, V. Olafsson, O. Tal and T. T. Liu, ‘Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI’, Neuroimage, 63, no. 1 (2012), pp. 356–64.

      2.1 Charles Sherrington: The Continuing Cartesian Impact

      Sherrington’s work left the role of the mind and its relation to the cortex problematic

      Sherrington’s dualism

Скачать книгу