Materials for Biomedical Engineering. Mohamed N. Rahaman

Чтение книги онлайн.

Читать онлайн книгу Materials for Biomedical Engineering - Mohamed N. Rahaman страница 69

Materials for Biomedical Engineering - Mohamed N. Rahaman

Скачать книгу

are weak forms of magnetism and, consequently, materials that show these two types of behavior are often considered nonmagnetic. Certain materials that contain paramagnetic atoms or ions, however, do show a strong permanent magnetization even in the absence of a magnetic field. This type of response, called ferromagnetism, is shown by materials composed of atoms of certain transition elements such as iron and cobalt, and certain rare earth elements such as gadolinium. In ferromagnetic materials, a special type of coupling occurs between adjacent atoms, resulting in cooperative alignment of their magnetic moment throughout the crystal. This coupling is purely a quantum mechanical effect that cannot be adequately explained in terms of classical physics. It leads to a high net magnetic moment of the material even in the absence of a magnetic field. Ferromagnetism is a property not just of the individual atoms but is a result of the interaction of each atom with its neighbors in the crystal lattice of the solid. Although the magnetization can vary with the magnetic field, magnetic susceptibility χm values as high as 106 are possible for ferromagnetic materials.

Schematic illustration of magnetic domains in a ferromagnetic material: (a) Randomly oriented domains in an unmagnetized material. (b) The domains become oriented upon application of a magnetic field, resulting in a highly magnetized material. Each arrow represents a huge number of atoms.

      4.6.5 Ferrimagnetic Materials

      Another type of magnetism, called ferrimagnetism, more common in ionic‐bonded ceramics, refers to a type of ferromagnetism in which the magnetic moment of ions at one type of atomic sites is partly cancelled by antiparallel interactions with ions of another site. However, there remains a net magnetic moment of the material in the absence of a magnetic field. Ferrimagnetic ceramics have a lower saturation magnetization than ferromagnetic metals but their electrically insulating properties provide an advantage in some engineering applications where a low electrical conductivity is required.

Schematic illustration of (a) Part of Fe3O4 crystal structure showing the tetrahedral a sites and octahedral b sites. (b) the arrangement of the electron magnetic moments of the Fe ions at the a and b sites in the Fe3O4 crystal structure.

      Maghemite (γ‐Fe2O3) has the same crystal structure as magnetite but it is often considered a ferrous ion (Fe2+) deficient magnetite because there are no Fe2+ ions in the crystal structure when compared to magnetite. Although there is no clear agreement about the distribution of the cations in the maghemite crystal structure, it is often stated that the Fe3+ ions occupy both the tetrahedral a sites and octahedral b sites, with five Fe3+ ions and one vacancy in the b sites for every three Fe3+ ions in the a sites. This can be expressed by the formula Fe[Fe5/31/3]O4 where the symbol ◻ represents a vacant site.

      4.6.6 Magnetization Curves and Hysteresis

Скачать книгу