Materials for Biomedical Engineering. Mohamed N. Rahaman

Чтение книги онлайн.

Читать онлайн книгу Materials for Biomedical Engineering - Mohamed N. Rahaman страница 71

Materials for Biomedical Engineering - Mohamed N. Rahaman

Скачать книгу

electrons). In comparison, the high thermal conductivity is due to two factors, the highly ordered crystal structure and the strong atomic bonding that strongly limits the incorporation of impurities into its structure. These two factors severely limit phonon scattering in the crystal lattice.

Schematic illustration of chart showing the thermal conductivity values for a variety of materials.

      In polymers, heat conduction occurs by vibration and rotation of the long chain molecules. Polymers have a low thermal conductivity, although, for a semicrystalline polymer, the conductivity increases with increasing volume fraction of crystalline regions because phonon scattering in the crystalline region is lower than that in an amorphous region of the same composition.

      4.7.2 Thermal Expansion Coefficient

      The expansion or contraction of a material upon heating or cooling is commonly quantified by its linear coefficient of thermal expansion α defined by the equation

      (4.48)equation

      where, Δl is the change in length of a specimen of length lo due to a change in temperature ΔT. The thermal expansion coefficient has the unit °C−1 (or K−1) but is often expressed in units of 10−6 °C−1 because of its low value. The thermal expansion coefficient of one material relative to another is dependent on its interatomic bonding energy versus displacement curve (Section 2.2).

      Although α varies slightly, depending on the temperature range of measurement, ceramics and glasses typically have low α values relative to other classes of materials, in the range ~5 × 10−6 to ~15 × 10−6 °C−1 over a temperature range of a few hundred degrees Celsius above room temperature. On the other hand, some glasses, such as fused silica glass, and a few glass‐ceramics have values as low as ~0.5 × 10−6 °C−1. Metals have higher α values, in the range ~10 × 10−6 to ~25 × 10−6 °C−1 but tungsten and a few metal alloys, for example, have values lower than ~5 × 10−6 °C−1. Polymers have the highest values, typically ~100 × 10−6 °C−1 and over.

      Optical properties of biomaterials are relevant to their use in applications such as contact lenses and intraoptical lenses, and dental restorations for repairing existing tooth structure, particularly in the anterior of the mouth. Important optical properties for biomaterials are their degree of transparency, refractive index, and color. Light is an electromagnetic wave and, consequently, electrostatic interactions with its electric field component determine the optical properties of a material.

      (4.49)equation

      where, Io is the intensity of the incident light beam and α is the absorption coefficient that can be obtained experimentally by plotting ln I versus x.

Schematic illustration of reflection, transmission, and absorption of a light beam incident on the surface of a material.

      Refraction (bending) of a light beam occurs when it passes from one medium into another, such as from air into glass. The refractive index n of a material is a measure of the extent to which an incident light beam is bent when it passes from a vacuum into the material. It is defined by

      (4.50)equation

      where, c is the velocity of light in a vacuum and v is the velocity of light in the material. As v must be smaller than c, n has values larger than 1. Several glasses, for example have a refractive index of ~1.5. Refraction as well as reflection of light occurs at the interface between two materials (or media) with different refractive index n1 and n2. Assuming that the light is incident normally on the surface, the reflectivity R, defined as the ratio

Скачать книгу