Climate Impacts on Sustainable Natural Resource Management. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Climate Impacts on Sustainable Natural Resource Management - Группа авторов страница 16

Climate Impacts on Sustainable Natural Resource Management - Группа авторов

Скачать книгу

illustration of annual GHG emissions (Mt CO2 yr–1) from 2000 to 2016."/> Schematic illustration of percentage of GHG emissions from the land-based sector (2000–2016).
Land cover changes Total area (ha) Percentage of emission (%)
From To
Secondary dryland forest Dry Shrub land 471,625.19 48.63
Secondary dryland forest Estate Cropland 178,297.07 12.68
Secondary dryland forest Plantation forest 142,460.67 10.04
Primary dryland forest Secondary dryland forest 317,020.70 5.43
Secondary dryland forest Bare ground 46,444.85 5.25
Secondary dryland forest Mixed dry agriculture 31,092.77 3.31
Secondary dryland forest Mining areas 28,919.68 3.27
Secondary mangrove forest Wet shrubland 35,461.77 2.48
Secondary mangrove forest Fish pond/aquaculture 23,129.13 1.85
Secondary swamp forest Wet shrubland 17,834.51 1.66

      

      1.3.2 Historical Baselines and Future Trajectories

Schematic illustration of the trend lines of annual GHG emissions for predicting future trajectories. Schematic illustration of the percentage of REDD+ progress in East Kalimantan for 2030.

      This study also showed that deforestation and forest degradation significantly contributed to GHG emissions (Figure 1.2). Since 2010, the governor launched the East Kalimantan Green policy (East Kalimantan 2011b) and established Regional Council on Climate Change (East Kalimantan 2011c) for implementing green growth initiatives and low carbon development program (East Kalimantan 2013). Also, East Kalimantan has several options in the land use, land‐use change, and forestry (LULUCF) sector for reducing emissions at low cost (Harris et al. 2008). However, tropical deforestation and its effect on GHG emissions are inseparable from the political and economic parts in Indonesia (Brockhaus et al. 2012), even though land cover change consequences may only reflect the accumulation of ecological conditions (Carlson et al. 2013). For those reasons, the government of Indonesia, as well as East Kalimantan Province, should focus on issuing the proper policies to apply the strategy for restoring deforested and degraded forests in the context of REDD+.

      Based on data shown in Table 1.2, deforestation of secondary dryland forest into the non‐forests contributed more than 70% of total GHG emissions, while primary dryland forest degraded into secondary dryland forest as well as secondary dryland forest degraded into plantation forest also contributed more than 15% of total GHG emissions. Thus, forest restoration strategy (Dumroese et al. 2015) is the critical aspect for reducing GHG emissions (van Noordwijk et al. 2014), because the main targets should be focused on reducing deforested and degraded forest landscapes (Bebber and Butt 2017)

Скачать книгу