Enzyme-Based Organic Synthesis. Cheanyeh Cheng

Чтение книги онлайн.

Читать онлайн книгу Enzyme-Based Organic Synthesis - Cheanyeh Cheng страница 29

Автор:
Жанр:
Серия:
Издательство:
Enzyme-Based Organic Synthesis - Cheanyeh Cheng

Скачать книгу

and α‐methyl‐cinnamaldehyde (MCA)]. The NCY whole cells were in lyophilized form and glucose was used for NAD(P)H cofactor recycling system [180].

      It was reported that indirectly regenerating YqjM or NemA (N‐ethylmaleimide reductase from E. coli) of reduced nicotinamide cofactors can be simplified by an efficient and convenient direct regeneration of catalytically active reduced flavins with the cell‐free bioreductions of activated conjugated C=C double bonds. In this process, reducing equivalents are provided via photocatalytic oxidation of a lot of simple sacrificial electron donors such as phosphite, formate, ethylenediaminetetraacetate (EDTA) [182]. Even when using crude cell extracts, the chemoselectivity of the photoenzymatic reduction was exclusive, only C=C double bond reduction without altering the ketone or aldehyde groups was observed. Up to 65% rates of the NADH‐driven reaction can be got while still preserving enantioselectivity.

Chemical reaction depicting asymmetric reduction of α-methylmaleic acid dimethylester with Z. mobilis or B. subtilis.

      A novel ER isolated from the bacterium Z. mobilis termed NCR reductase and OYEs 1–3 from yeast of Saccharomyces spp. were extended to use for the asymmetric reduction of a variety of activated C=C substrates. The activating groups in the investigated substrates include aldehyde, ketone, imide, nitro, carboxylic acid, and ester moieties. To control the stereospecificity of the reaction, strategies such as variation of the main substrate structure (cyclic vs. acylic), switching the (E/Z) configuration of the alkene moiety, modifying the substitution pattern (mono‐ vs. di‐, α‐ vs. β‐), or proper selection of the enzyme are utilized to allow the access to the opposite enantiomeric products. Results showed that reaction rates and stereoselectivities can be varied by different substrate type. The “substrate‐based stereocontrol” is related with the ring size of cycloalkenones, position of substituents on the C=C bond, and its E/Z configuration. The “enzyme‐based stereocontrol” was observed with nitroalkene in which the opposite enantiomeric products can be obtained by both NCR reductase and OYEs 1–3 [184].

Chemical reaction depicting asymmetric bioreduction of citraconic acid dimethylester via a coupled-substrate system. Chemical reaction depicting bY fermentations and OYEs 1–3 mediated bioreductions of substrates 1–6. Chemical reaction depicting the reduction of gamma,delta-double bond of the conjugated lactone in securinine.

Скачать книгу