Enzyme-Based Organic Synthesis. Cheanyeh Cheng
Чтение книги онлайн.
Читать онлайн книгу Enzyme-Based Organic Synthesis - Cheanyeh Cheng страница 31
65 65 Banwell, M.G., Kokas, O.J., and Willis, A.C. (2007). Org. Lett. 9: 3503–3506.
66 66 Endoma‐Arias, M.A.A. and Hudlicky, T. (2011). Tetrahedron Lett. 52: 6632–6634.
67 67 Boyd, D.R., Sharma, N.D., Coen, G.P. et al. (2007). Chem. A Eur. J. 13: 5804–5811.
68 68 Boyd, D.R., Sharma, N.D., Stevenson, P.J. et al. (2011). Org. Biomol. Chem. 9: 1479–1490.
69 69 Boyd, D.R., Sharma, N.D., Malone, J.F., and Allen, C.C.R. (2009). Chem. Commun. 3633–3635.
70 70 Kim, D., Lee, J.S., Choi, K.Y. et al. (2007). Enzyme Microb. Technol. 41: 221–225.
71 71 Kourist, R., Dominguez de María, P., and Bornscheuer, U.T. (2008). Chembiochem 9: 491–498.
72 72 Fabris, F., Collins, J., Sullivan, B. et al. (2009). Org. Biomol. Chem. 7: 2619–2627.
73 73 Costas, M., Mehn, M.P., Jensen, M.P., and Que, L. Jr. (2004). Chem. Rev. 104: 939–986.
74 74 Solomon, E.I., Brunold, T.C., Davis, M.I. et al. (2000). Chem. Rev. 100: 235–349.
75 75 Lee, K. (2006). FEMS Microbiol. Lett. 255: 316–320.
76 76 Jeffrey, A.M., Yeh, H.J., Jerina, D.M. et al. (1975). Biochem. 14: 575–584.
77 77 Chopard, C., Bertho, G., and Prange, T. (2012). RSC Adv. 2: 605–615.
78 78 Boyd, D.R., Sharma, N.D., Belhocine, T. et al. (2006). Chem. Commun. 4934–4936.
79 79 Lonsdale, R., Harvey, J.N., and Mulholland, A.J. (2010). J. Phys. Chem. B 114: 1156–1162.
80 80 Farinas, E.T., Alcalde, M., and Arnold, F. (2004). Tetrahedron 60: 525–528.
81 81 Jin, S., Kakris, T.M., Bryson, T.A. et al. (2003). J. Am. Chem. Soc. 125: 3406–3407.
82 82 Meester, R.J.W., Duisken, M., and Hollender, J. (2009). Xenobiotica 39: 663–671.
83 83 Malla, S., Thuy, T.T.T., Oh, T.J., and Sohng, J.K. (2011). Arch. Microbiol. 193: 95–103.
84 84 Belter, A., Skupinska, M., Giel‐Pietraszuk, M. et al. (2011). Biol. Chem. 392: 1053–1075.
85 85 Ruckenstuhl, C., Lang, S., Poschenel, A. et al. (2007). Antimicrob. Agents Chemother. 51: 275–284.
86 86 Godio, R.P., Fouces, R., and Martin, J.F. (2007). Chem. Biol. 14: 1334–1346.
87 87 Nakano, C., Motegi, A., Sato, T. et al. (2007). Biosci. Biotechnol. Biochem. 71: 2543–2550.
88 88 Xu, Y., Li, A., Jia, X., and Li, Z. (2011). Green Chem. 13: 2452–2458.
89 89 Prichanont, S., Leak, D.J., and Stuckey, D.C. (2000). Enzyme Microb. Technol. 27: 134–142.
90 90 Julsing, M.K., Kuhn, D., Schimd, A., and Bühler, B. (2012). Biotechnol. Bioeng. 109: 1109–1119.
91 91 Bae, J.‐W., Doo, E.‐H., Shin, S.‐H. et al. (2010). Process Biochem. 45: 147–152.
92 92 Bühler, B., Park, J.‐B., Blank, L.M., and Schmid, A. (2008). Appl. Environ. Microbiol. 74: 1436–1446.
93 93 Park, J.‐B., Bühler, B., Habicher, T. et al. (2006). Biotecnol. Bioeng. 95: 501–512.
94 94 Hollmann, F., Lin, P.‐C., Witholt, B., and Schimd, A. (2003). J. Am. Chem. Soc. 125: 8209–8217.
95 95 Schimd, A., Hofstetter, K., Feiten, H.‐J. et al. (2001). Adv. Synth. Catal. 343: 732–737.
96 96 Sello, G., Orsini, F., Bernasconi, S., and Gennaro, P.D. (2006). Tetrahedron Asymm. 17: 372–376.
97 97 Bhattacharya, S., Drews, A., Lyagin, E. et al. (2012). Chem. Eng. Technol. 35: 1–9.
98 98 Xie, F., Chao, Y., Xue, Z. et al. (2009). J. Ind. Microbiol. Biotechnol. 36: 739–746.
99 99 Gladkowski, W., Grbarczyk, M., Wińska, K. et al. (2007). J. Mol. Catal. B 49: 79–87.
100 100 Molina, S., Rencoret, J., del Río, J.C. et al. (2008). Appl. Microbiol. Biotechnol. 80: 211–222.
101 101 Carreño, M.C. (1995). Chem. Rev. 95: 6129–6144.
102 102 Legros, J., Dehli, J.R., and Bolm, C. (2005). Adv. Synth. Catal. 347: 19–31.
103 103 Matsui, T.; Dekishima, Y.; Ueda, M. (2014). Appl. Microbiol. Biotechnol.. 98, 7699–7706. DOI https://doi.org/10.1007/s00253‐014‐5932‐z.
104 104 Sangar, S., Pal, M., Moon, L.S., and Jolly, R.S. (2012). Bioresour. Technol. 115: 102–110.
105 105 Zhai, X.‐H., Ma, Y.‐H., Lai, D.‐Y. et al. (2013). J. Ind. Microbiol. Biotechnol. 40: 797–803.
106 106 Zhang, J.‐D., Li, A.‐T., Yu, H.‐L. et al. (2011). J. Ind. Microbiol. Biotechnol. 38: 633–641.
107 107 De Gonzalo, G., Rodríguez, C., Rioz‐Martínez, A., and Gotor, V. (2012). Enzyme Microb. Technol. 50: 43–49.
108 108 Li, A.‐T., Yu, H.‐L., Pan, J. et al. (2011). Bioresour. Technol. 102: 1537–1542.
109 109 Franceschini, S., Van Beek, H.L., Pennetta, A. et al. (2012). J. Biol. Chem. 287: 22626–22634.
110 110 Orru, R., Dudek, H.M., Martinoli, C. et al. (2011). J. Biol. Chem. 286: 29284–29291.
111 111 Yachnin, B.J., Sprules, T., McEvoy, M.B. et al. (2012). J. Am. Chem. Soc. 134: 7788–7795.
112 112 Grogan, G. (2012). Annu. Rep. Prog. Chem. Sect. B Org. Chem. 108: 202–227.
113 113 Baek, A.‐H., Jeon, E.‐Y., Lee, S.‐M., and Park, J.‐B. (2015). Biotechnol. Bioeng. 112: 889–895.
114 114 Kim, S.‐U., Kim, K.‐R., Kim, J.‐W. et al. (2015). J. Agric. Food Chem. 63: 2773–2781.
115 115 Lee, W.‐H., Park, E.‐H., and Kim, M.‐D. (2014). J. Micrbiol. Biotechnol. 24: 1685–1689.
116 116 Yachnin, B.J., McEvoy, M.B., Maccuish, R.J.D. et al. (2014). ACS Chem. Biol. 9: 2843–2851.
117 117 Reignier, T., de Berardinis, V., Petit, J.L. et al. (2014). Chem. Commun. 50: 7793–7796.
118 118 Reetz, M.T. (2009). J. Org. Chem. 74: 5767–5778.
119 119 Hilker, I., Wohlgemuth, R., Alphand, V., and Furstoss, R. (2005). Biotechnol. Bioeng. 92: 702–710.
120 120 Halliwell, B. and Gutteridge, J.M.C. (1999). Free Radicals in Biology and Medicine. New York: Oxford University Press.
121 121 Dringen, R., Pawlowski, P.G., and Hirrlinger, J. (2005). J. Neurosci. Res. 79: 157–165.
122 122 Nicotra, A., Pierucci, F., Parvez, H., and Senatori, O. (2004). Neurotoxicology 25: 155–165.
123 123