Fractures in the Horse. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fractures in the Horse - Группа авторов страница 48

Fractures in the Horse - Группа авторов

Скачать книгу

style="font-size:15px;">      2 2 Mori, S. and Burr, D. (1993). Increased intracortical remodelling following fatigue damage. Bone 14: 103–109.

      3 3 Lee, T., Staines, A., and Taylor, D. (2002). Bone adaptation to load: microdamage as a stimulus for bone remodelling. J. Anat. 201: 437–446.

      4 4 Taylor, D. (2003). Failure processes in hard and soft tissues. In: Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro, 1e (eds. I. Milne, R.O. Ritchie and B.L. Karihaloo), 35–95. Oxford: Elsevier.

      5 5 McCormack, J., Stover, S.M., Gibeling, J.C., and Fyhrie, D.P. (2012). Effects of mineral content on the fracture properties of equine cortical bone in double‐notched beams. Bone 50: 1275–1280.

      6 6 Ritchie, R.O., Kinney, J.H., Kruzic, J.J., and Nalla, R.K. (2005). A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract. Eng. Mater. Struct. 28: 345–371.

      7 7 Feng, X. (2009). Chemical and biochemical basis of cell‐bone matrix interaction in health and disease. Curr. Chem. Biol. 3: 189–196.

      8 8 Burstein, A.H., Zika, J.M., Heiple, K.G., and Klein, L. (1975). Contribution of collagen and mineral to the elastic‐plastic properties of bone. J. Bone Joint Surg. Am. 57: 956–961.

      9 9 Currey, J.D. (1969). The mechanical consequences of variation in the mineral content of bone. J. Biomech. 2: 1–11.

      10 10 Currey, J. (1984). The Mechanical Adaptations of Bones. Princeton, NJ: Princeton University Press.

      11 11 Wang, X., Bank, R.A., Tekoppele, J.M., and Agrawal, C.M. (2001). The role of collagen in determining bone mechanical properties. J. Orthop. Res. 19: 1021–1026.

      12 12 Wang, X., Shen, X., Li, X., and Mauli, A.C. (2002). Age‐related changes in the collagen network and toughness of bone. Bone 31: 1–7.

      13 13 Rho, J.‐Y., Kuhn‐Spearing, L., and Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20: 92–102.

      14 14 Friedman, A.W. (2006). Important determinants of bone strength: beyond bone mineral density. J. Clin. Rheumatol. 12: 70–77.

      15 15 Martin, R.M. and Correa, P.H.S. (2010). Bone quality and osteoporosis therapy. Arq. Bras. Endocrinol. Metabol. 54: 186–199.

      16 16 Fonseca, H., Moreira‐Gonçalves, D., Coriolano, H.‐J.A., and Duarte, J.A. (2014). Bone quality: the determinants of bone strength and fragility. Sports Med. 44: 37–53.

      17 17 Currey, J. (1982). 'Osteons' in biomechanical literature. J. Biomech. 15: 717.

      18 18 Gibson, V.A., Stover, S.M., Gibeling, J.C. et al. (2006). Osteonal effects on elastic modulus and fatigue life in equine bone. J. Biomech. 39: 217–225.

      19 19 Stover, S.M., Pool, R.R., Martin, R.B., and Morgan, J.P. (1992). Histological features of the dorsal cortex of the third metacarpal bone mid‐diaphysis during postnatal growth in Thoroughbred horses. J. Anat. 181: 455–469.

      20 20 Okada, H., Tamamura, R., Kanno, T. et al. (2013). Ultrastructure of cement lines. J. Hard Tissue. Biol. 22: 445–450.

      21 21 Nakayama, H., Takakuda, K., Matsumoto, H.N. et al. (2010). Effects of altered bone remodeling and retention of cement lines on bone quality in Osteopetrotic aged c‐Src‐deficient mice. Calcif. Tissue Int. 86: 172–183.

      22 22 Schaffler, M.B., Burr, D.B., and Frederickson, R.G. (1987). Morphology of the osteonal cement line in human bone. Anat. Rec. 217: 223–228.

      23 23 Burr, D.S., Schaffler, M.B., and Frederickson, R.G. (1988). Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech. 21: 939–945.

      24 24 Burr, D. (2011). Why bones bend but don't break. J. Musculoskelet. Neuronal Interact. 11: 270–285.

      25 25 Boskey, A.L. (2013). Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2: 447.

      26 26 Kulin, R.M., Jiang, F., and Vecchio, K.S. (2011). Loading rate effects on the R‐curve behavior of cortical bone. Acta Biomater. 7: 724–732.

      27 27 Adharapurapu, R.R., Jiang, F., and Vecchio, K.S. (2006). Dynamic fracture of bovine bone. Mater. Sci. Eng. C 26: 1325–1332.

      28 28 Evans, A.G. (1990). Perspective on the development of high‐toughness ceramics. J. Am. Ceram. Soc. 73: 187–206.

      29 29 Kirchner, H. (2006). Ductility and brittleness of bone. Int. J. Fract. 139: 509–516.

      30 30 Zioupos, P., Kaffy, C., and Currey, J. (2006). Tissue heterogeneity, composite architecture and fractal dimension effects in the fracture of ageing human bone. Int J Frac. 139: 407–424.

      31 31 Wasserman, N., Brydges, B., Searles, S., and Akkus, O. (2008). in vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone 43: 856–861.

      32 32 Ritchie, R.O., Buehler, M.J., and Hansma, P. (2009). Plasticity and toughness in bone. Phys. Today 62: 41–47.

      33 33 Behiri, J. and Bonfield, W. (1984). Fracture mechanics of bone – the effects of density, specimen thickness and crack velocity on longitudinal fracture. J. Biomech. 17: 25–34.

      34 34 Nalla, R., Kinney, J., and Ritchie, R. (2003). On the fracture of human dentin: is it stress‐or strain‐controlled? J. Biomed. Mater. 67: 484–495.

      35 35 Nordin, M. and Frankel, V.H. (2012). Biomechanics of bone. In: Basic Biomechanics of the Musculoskeletal System, 4e (eds. M. Nordin and V.H. Frankel), 472. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health.

      36 36 Morgan, E.F. and Bouxsein, M.L. (2008). Biomechanics of bone and age‐related fractures. In: Principles of Bone Biology, 3e (eds. J.P. Bilezikian, L.G. Raisz and T.J. Martin), 29–51. San Diego: Academic Press.

      37 37 Watkins, J.P. and Sampson, S.N. (2019). Fractures of the tibia. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 648–663. Hoboken, NJ: Wiley.

      38 38 Anthenill, L.A., Gardner, I.A., Pool, R.R. et al. (2010). Comparison of macrostructural and microstructural bone features in Thoroughbred racehorses with and without midbody fracture of the proximal sesamoid bone. Am. J. Vet. Res. 71: 755–765.

      39 39 Bramlage, L., Schneider, R., and Gabel, A. (1988). A clinical perspective on lameness originating in the carpus. Equine Vet. J. 20: 12–18.

      40 40 Olusa, T.A., Akbar, Z., Murray, C.M., and Davies, H.M. (2020). Morphometric analysis of the intercarpal ligaments of the equine proximal carpal bones during simulated flexion and extension of cadaver limbs. Anat. Histol. Embryol. 50: 1–10.

      41 41 O'Brien, F.J., Hardiman, D.A., Hazenberg, J.G. et al. (2005). The behaviour of microcracks in compact bone. Eur. J. Morphol. 42: 71–79.

      42 42 Moreno, M.R., Zambrano, S., Dejardin, L.M., and Saunders, W.B. (2017). Bone biomechanics and fracture biology. In: Veterinary Surgery: Small Animal Expert Consult, 2e (eds. S.A. Johnston and K.M. Tobias), 612–648. Philadelphia, PA: Elsevier.

      43 43 Lopez, M.J. (2019). Bone biology and fracture healing. In: Equine Surgery, 5e (eds. J.A. Auer, J.A. Stick, J.M. Kümmerle and T. Prange), 1255–1269. St. Louis, MO: Elsevier.

      44 44 Markel, M.D.

Скачать книгу