Fractures in the Horse. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fractures in the Horse - Группа авторов страница 50

Fractures in the Horse - Группа авторов

Скачать книгу

Rubin, C.T. and Lanyon, L.E. (1982). Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J. Exp. Biol. 101: 187–211.

      85 85 Riggs, C.M. (2002). Fractures – a preventable hazard of racing thoroughbreds? Vet. J. 163: 19–29.

      86 86 Bailey, C.J., Reid, S.W.J., Hodgson, D.R. et al. (1998). Flat, hurdle and steeple racing: risk factors for musculoskeletal injury. Equine Vet. J. 30: 498–503.

      87 87 Martig, S., Chen, W., Lee, P.V.S., and Whitton, R.C. (2014). Bone fatigue and its implications for injuries in racehorses. Equine Vet. J. 46: 408–415.

      88 88 Pinchbeck, G.L., Clegg, P.D., Boyde, A. et al. (2013). Horse‐, training‐ and race‐level risk factors for palmar/plantar osteochondral disease in the racing Thoroughbred. Equine Vet. J. 45: 582–586.

      89 89 Kawcak, C.E., McIlwraith, C.W., Norrdin, R.W. et al. (2000). Clinical effects of exercise on subchondral bone of carpal and metacarpophalangeal joints in horses. Am. J. Vet. Res. 61: 1252–1258.

      90 90 Cui, W. (2002). A state‐of‐the‐art review on fatigue life prediction methods for metal structures. J. Mar. Sci. Technol. 7: 43–56.

      91 91 Carter DaH, W.C. (1977). Compact bone fatigue damage – I. residual strength and stiffness. J. Biomech. 10: 325–337.

      92 92 Carter DaH, W.C. (1977). Compact bone fatigue damage: a microscopic examination. Clin. Orthop. Relat. Res.: 265–274.

      93 93 Carter, D.R., Caler, W.E., Spengler, D.M., and Frankel, V.H. (1981). Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. Scand. 52: 481–490.

      94 94 Hastings A, Gibson LJ, Moore TLA, Cheng DW, Guo XE. Endurance limit for bovine trabecular bone. Paper presented at: Orthopedic Research Society 2004 Annual Meeting; Mar 7–10, 2004; San Francisco, CA, USA.

      95 95 Ganguly, P., Moore, T.L.A., and Gibson, L.J. (2004). A phenomenological model for predicting fatigue life in bovine trabecular bone. J. Biomech. Eng. 126: 330–339.

      96 96 Zioupos, P. and Currey, J.D. (1994). The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29: 978–986.

      97 97 Fleck, C. and Eifler, D. (2003). Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. J. Biomech. 36: 179–189.

      98 98 Schaffler, M., Radin, E., and Burr, D. (1989). Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10: 207–214.

      99 99 Martin, R.B., Gibson, V.A., Stover, S.M. et al. (1996). in vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. J. Orthop. Res. 14: 794–801.

      100 100 Burr, D.B. and Martin, R.B. (1989). Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186: 186–216.

      101 101 Reilly, G.C., Currey, J.D., and Goodship, A.E. (1997). Exercise of young Thoroughbred horses increases impact strength of the third metacarpal bone. J. Orthop. Res. 15: 862–868.

      102 102 Ritchie, R. (1988). Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103: 15–28.

      103 103 Ritchie, R.O. (1999). Mechanisms of fatigue‐crack propagation in ductile and brittle solids. Int. J. Fract. 100: 55–83.

      104 104 Malik, C., Stover, S., Martin, R., and Gibeling, J. (2003). Equine cortical bone exhibits rising R‐curve fracture mechanics. J. Biomech. 36: 191–198.

      105 105 Yeni, Y.N. and Norman, T.L. (2000). Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J. Biomed. Mater. Res. 51: 504–509.

      106 106 Vashishth, D., Behiri, J., and Bonfield, W. (1997). Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 30: 763–769.

      107 107 Yeni YN, Fyhrie DP. Collagen‐bridged microcrack model for cortical bone tensile strength. Paper presented at: American Society of Mechanical Engineers 2001 Conference; Jun 27 Jul 1, 2001; Snowbird, UT, USA.

      108 108 Nalla, R.K., Kinney, J.H., and Ritchie, R.O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2: 164–168.

      109 109 Nalla, R.K., Kruzic, J.J., and Ritchie, R.O. (2004). On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone 34: 790–798.

      110 110 Nalla, R.K., Kruzic, J.J., Kinney, J.H., and Ritchie, R.O. (2005). Mechanistic aspects of fracture and R‐curve behavior in human cortical bone. Biomaterials 26: 217–231.

      111 111 Ager, J.W., Balooch, G., and Ritchie, R.O. (2006). Fracture, aging, and disease in bone. J. Mater. Res. 21: 1878–1892.

      112 112 Launey, M.E., Buehler, M.J., and Ritchie, R.O. (2010). On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40: 25–53.

      113 113 Nalla, R., Stölken, J., Kinney, J., and Ritchie, R. (2005). Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J. Biomech. 38: 1517–1525.

      114 114 Nalla, R., Kruzic, J., Kinney, J. et al. (2006). Role of microstructure in the aging‐related deterioration of the toughness of human cortical bone. Mater. Sci. Eng. C 26: 1251–1260.

      115 115 Zioupos, P. (1998). Recent developments in the study of failure of solid biomaterials and bone: ‘fracture’ and ‘pre‐fracture’ toughness. Mater. Sci. Eng. C 6: 33–40.

      116 116 Galley, S.A. and Donahue, S.W. (2006). Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Crit. Rev. Biomed. Eng. 34: 215–271.

      117 117 Burr, D.B., Turner, C.H., Naick, P. et al. (1998). Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31: 337–345.

      118 118 Kaplan, F.S., Hayes, W.C., Keaveny, T.M. et al. (1994). Form and function of bone. In: Orthopaedic Basic Science (ed. S.R. Simon), 127–184. Rosemont, IL: American Academy of Orthopaedic Surgeons.

      119 119 Martin, R.B. and Burr, D.B. (1989). Structure, Function, and Adaptation of Compact Bone. New York: Raven Press.

      120 120 Turley, S.M., Thambyah, A., Riggs, C.M. et al. (2014). Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. J. Anat. 224: 647–658.

      121 121 Wolff, J. (1892). Das Gesetz der Transform der Knochen. Berlin: Hirschwald.

      122 122 Lynch, M.E., Main, R.P., Xu, Q. et al. (2011). Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone 49: 439–446.

      123 123 Radin, E.L., Parker, H.G., Pugh, J.W. et al. (1973). Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J. Biomech. 6: 51–57.

      124 124 Turner, C.H., Hsieh, Y.‐F., Müller, R. et al. (2001). Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. J. Bone Miner. Res. 16: 206–213.

      125 125 Wergedal, J.E., Sheng, M.H.C., Ackert‐Bicknell, C.L. et al. (2005). Genetic variation in femur extrinsic

Скачать книгу