Genome Editing in Drug Discovery. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Editing in Drug Discovery - Группа авторов страница 17

Genome Editing in Drug Discovery - Группа авторов

Скачать книгу

al. (2016). Inheritable silencing of endogenous genes by hit‐and‐run targeted epigenetic editing. Cell 167 (219–232): e14.

      3 Anzalone, A.V., Koblan, L.W., and Liu, D.R. (2020). Genome editing with CRISPR‐Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38: 824–844.

      4 Baker, O., Gupta, A., Obst, M. et al. (2016). RAC‐tagging: recombineering and Cas9‐assisted targeting for protein tagging and conditional analyses. Sci. Rep. 6: 25529.

      5 Barrangou, R., Fremaux, C., Deveau, H. et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.

      6 Bhargava, J., Shashikant, C.S., Carr, J.L. et al. (1999). Direct cloning of genomic DNA by recombinogenic targeting method using a yeast‐bacterial shuttle vector, pClasper. Genomics 62: 285–288.

      7 Bibikova, M., Carroll, D., Segal, D.J. et al. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol. 21: 289–297.

      8 Bibikova, M., Golic, M., Golic, K.G., and Carroll, D. (2002). Targeted chromosomal cleavage and mutagenesis in drosophila using zinc‐finger nucleases. Genetics 161: 1169–1175.

      9 Boch, J., Scholze, H., Schornack, S. et al. (2009). Breaking the code of DNA binding specificity of TAL‐Type III effectors. Science 326: 1509–1512.

      10 Buerstedde, J.M. and Takeda, S. (1991). Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67: 179–188.

      11 Carbery, I.D., Ji, D., Harrington, A. et al. (2010). Targeted genome modification in mice using zinc‐finger nucleases. Genetics 186: 451–459.

      12 Carreras, A., Pane, L.S., Nitsch, R. et al. (2019). in vivo genome and base editing of a human PCSK9 knock‐in hypercholesterolemic mouse model. BMC Biol. 17: 4.

      13 Cermak, T., Doyle, E.L., Christian, M. et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting. Nucleic Acids Res. 39: e82.

      14 Chadwick, A.C., Wang, X., and Musunuru, K. (2017). in vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin Type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. 37: 1741–1747.

      15 Chen, F., Pruett‐Miller, S.M., Huang, Y. et al. (2011). High‐frequency genome editing using ssDNA oligonucleotides with zinc‐finger nucleases. Nat. Methods 8: 753–755.

      16 Cole‐Strauss, A., Yoon, K., Xiang, Y. et al. (1996). Correction of the mutation responsible for sickle cell anemia by an RNA‐DNA oligonucleotide. Science 273: 1386–1389.

      17 Cristea, S., Freyvert, Y., Santiago, Y. et al. (2013). in vivo cleavage of transgene donors promotes nuclease‐mediated targeted integration. Biotechnol. Bioeng. 110: 871–880.

      18 Ding, Q., Lee, Y.K., Schaefer, E.A. et al. (2013). A TALEN genome‐editing system for generating human stem cell‐based disease models. Cell Stem Cell 12: 238–251.

      19 Doyon, Y., Mccammon, J.M., Miller, J.C. et al. (2008). Heritable targeted gene disruption in zebrafish using designed zinc‐finger nucleases. Nat. Biotechnol. 26: 702–708.

      20 Garneau, J.E., Dupuis, M.E., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.

      21 Gaudelli, N.M., Komor, A.C., Rees, H.A. et al. (2017). Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551: 464–471.

      22 Geurts, A.M., Cost, G.J., Freyvert, Y. et al. (2009). Knockout rats via embryo microinjection of zinc‐finger nucleases. Science 325: 433.

      23 Guilinger, J.P., Thompson, D.B., and Liu, D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32: 577–582.

      24 Hanna, R.E. and Doench, J.G. (2020). Design and analysis of CRISPR‐Cas experiments. Nat. Biotechnol. 38: 813–823.

      25 Hess, G.T., Fresard, L., Han, K. et al. (2016). Directed evolution using dCas9‐targeted somatic hypermutation in mammalian cells. Nat. Methods 13: 1036–1042.

      26 Hinnen, A., Hicks, J.B., and Fink, G.R. (1978). Transformation of yeast. Proc. Natl. Acad. Sci. U. S. A. 75: 1929–1933.

      27 Hirata, R., Chamberlain, J., Dong, R., and Russell, D.W. (2002). Targeted transgene insertion into human chromosomes by adeno‐associated virus vectors. Nat. Biotechnol. 20: 735–738.

      28 Ishino, Y., Shinagawa, H., Makino, K. et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia coli, and identification of the gene product. J. Bacteriol. 169: 5429–5433.

      29 Jiang, W., Bikard, D., Cox, D. et al. (2013). RNA‐guided editing of bacterial genomes using CRISPR‐Cas systems. Nat. Biotechnol. 31: 233–239.

      30 Jiang, W., Zhao, X., Gabrieli, T. et al. (2015). Cas9‐assisted targeting of CHromosome segments CATCH enables one‐step targeted cloning of large gene clusters. Nat. Commun. 6: 8101.

      31 Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U. S. A. 93: 1156–1160.

      32 Kim, H.J., Lee, H.J., Kim, H. et al. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19: 1279–1288.

      33 Klompe, S.E., Vo, P.L.H., Halpin‐Healy, T.S., and Sternberg, S.H. (2019). Transposon‐encoded CRISPR‐Cas systems direct RNA‐guided DNA integration. Nature 571: 219–225.

      34 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage. Nature 533: 420–424.

      35 Li, S., Akrap, N., Cerboni, S. et al. (2021). Universal toxin‐based selection for precise genome engineering in human cells. Nat. Commun. 12: 497.

      36 Maeder, M.L., Thibodeau‐Beganny, S., Osiak, A. et al. (2008). Rapid “open‐source” engineering of customized zinc‐finger nucleases for highly efficient gene modification. Mol. Cell 31: 294–301.

      37 Maier, D.A., Brennan, A.L., Jiang, S. et al. (2013). Efficient clinical scale gene modification via zinc finger nuclease‐targeted disruption of the HIV co‐receptor CCR5. Hum. Gene Ther. 24: 245–258.

      38 Makarova, K.S., Grishin, N.V., Shabalina, S.A. et al. (2006). A putative RNA‐interference‐based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1: 7.

      39 Maresca, M., Erler, A., Fu, J. et al. (2010). Single‐stranded heteroduplex intermediates in lambda red homologous recombination. BMC Mol. Biol. 11: 54.

      40 Maresca, M., Lin, V.G., Guo, N., and Yang, Y. (2013). Obligate ligation‐gated recombination (ObLiGaRe): custom‐designed nuclease‐mediated targeted integration through nonhomologous end joining. Genome Res. 23: 539–546.

      41 Marraffini, L.A. and Sontheimer, E.J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843–1845.

      42 Miller, J., Mclachlan, A.D., and

Скачать книгу