Genome Editing in Drug Discovery. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Genome Editing in Drug Discovery - Группа авторов страница 42
75 Tak, Y.E., Kleinstiver, B.P., Nunez, J.K. et al. (2017). Inducible and multiplex gene regulation using CRISPR‐Cpf1‐based transcription factors. Nat. Methods 14: 1163–1166.
76 Takeda, H., Kataoka, S., Nakayama, M. et al. (2019). CRISPR‐Cas9‐mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc. Natl. Acad. Sci. U. S. A. 116: 15635–15644.
77 Thomas, J.D., Polaski, J.T., Feng, Q. et al. (2020). RNA isoform screens uncover the essentiality and tumor‐suppressor activity of ultraconserved poison exons. Nat. Genet. 52: 84–94.
78 Tuladhar, R., Yeu, Y., Tyler Piazza, J. et al. (2019). CRISPR‐Cas9‐based mutagenesis frequently provokes on‐target mRNA misregulation. Nat. Commun. 10: 4056.
79 Tzelepis, K., Koike‐Yusa, H., De Braekeleer, E. et al. (2016). A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in Acute Myeloid Leukemia. Cell Rep. 17: 1193–1205.
80 Vakulskas, C.A., Dever, D.P., Rettig, G.R. et al. (2018). A high‐fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24: 1216–1224.
81 Van Der Meer, D., Barthorpe, S., Yang, W. et al. (2019). Cell Model Passports‐a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 47: D923–D929.
82 Wang, T., Birsoy, K., Hughes, N.W. et al. (2015). Identification and characterization of essential genes in the human genome. Science 350: 1096–1101.
83 Wei, J., Long, L., Zheng, W. et al. (2019). Targeting REGNASE‐1 programs long‐lived effector T cells for cancer therapy. Nature 576: 471–476.
84 Wienert, B., Wyman, S.K., Richardson, C.D. et al. (2019). Unbiased detection of CRISPR off‐targets in vivo using DISCOVER‐Seq. Science 364: 286–289.
85 Wiszniewska, J., Bi, W., Shaw, C. et al. (2014). Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur. J. Hum. Genet. 22: 79–87.
86 Wu, J. and Yin, H. (2019). Engineering guide RNA to reduce the off‐target effects of CRISPR. J. Genet. Genomics 46: 523–529.
87 Yau, E.H., Kummetha, I.R., Lichinchi, G. et al. (2017). Genome‐wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers. Cancer Res. 77: 6330–6339.
88 Ye, L., Park, J.J., Dong, M.B. et al. (2019). in vivo CRISPR screening in CD8 T cells with AAV‐sleeping beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37: 1302–1313.
89 Yeung, A.T.Y., Choi, Y.H., Lee, A.H.Y. et al. (2019). A genome‐wide knockout screen in human macrophages identified host factors modulating salmonella infection. MBio 10.
90 Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. (2015). Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 163: 759–771.
91 Zhang, F. (2019). Development of CRISPR‐Cas systems for genome editing and beyond. Q. Rev. Biophys. 52: 1–31.
92 Zhao, Y., Tyrishkin, K., Sjaarda, C. et al. (2019). A one‐step tRNA‐CRISPR system for genome‐wide genetic interaction mapping in mammalian cells. Sci. Rep. 9: 14499.
93 Zischewski, J., Fischer, R., and Bortesi, L. (2017). Detection of on‐target and off‐target mutations generated by CRISPR/Cas9 and other sequence‐specific nucleases. Biotechnol. Adv. 35: 95–104.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.