Genome Editing in Drug Discovery. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Editing in Drug Discovery - Группа авторов страница 40

Genome Editing in Drug Discovery - Группа авторов

Скачать книгу

corresponding to the PAM sequence in the donor sequence. Such “PAM‐silent” mutations, once incorporated into the target site, will block re‐cleavage by the CRISPR nuclease. This has become a common practice for SNP/mutation generation to increase KI efficiencies especially when it is low (i.e. <5%). However, this would inevitably introduce a nucleotide mutation in the edited site, albeit as a silent codon change. This silent codon change may have an impact on mRNA (stability, secondary structure, or translation efficiency) and further confound the effect of the targeted nucleotide SNP/mutation on mRNA. It is therefore preferred not to adopt the PAM‐silent strategy, especially if the editing efficiencies are greater than 10%. If used, a QC assay at the mRNA level (i.e. RT‐qPCR) will need to be applied to assess the effect of the mutations (the on‐target nucleotide change plus PAM‐silent mutation) on mRNA among isogenic lines before functional assays are applied.

      In this chapter, we reviewed important design considerations for CRISPR experiments and the major providers of reagents, and discussed ways of working with CROs for genome editing projects. Many of the considerations are equally applicable to projects carried out in‐house. Regardless of where the genome editing projects are to be conducted, we suggest applying the formula Model x Assay x Perturbation, as well as the triple constraint principle – quality, time, and cost – in designing and managing execution of each project. We hope that the guidelines discussed here will help researchers strike an appropriate balance of these principles to maximize scientific impact of this exciting technology within a given budget or resource.

      We would like to thank Gerard Drewes and Michelle Kimberland for critical reading of the manuscript.

      1 Acharya, S., Mishra, A., Paul, D. et al. (2019). Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc. Natl. Acad. Sci. U. S. A. 116: 20959–20968.

      2 Aguirre, A.J., Meyers, R.M., Weir, B.A. et al. (2016). Genomic copy number dictates a gene‐independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6: 914–929.

      3 Behan, F.M., Iorio, F., Picco, G. et al. (2019). Prioritization of cancer therapeutic targets using CRISPR‐Cas9 screens. Nature 568: 511–516.

      4 Ben‐David, U., Siranosian, B., Ha, G. et al. (2018). Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560: 325–330.

      5 Boettcher, M., Tian, R., Blau, J.A. et al. (2018). Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36: 170–178.

      6 Borys, S.M. and Younger, S.T. (2020). Identification of functional regulatory elements in the human genome using pooled CRISPR screens. BMC Genomics 21: 107.

      7 Bradford, J. and Perrin, D. (2019a). A benchmark of computational CRISPR‐Cas9 guide design methods. PLoS Comput. Biol. 15: e1007274.

      8 Bradford, J. and Perrin, D. (2019b). Improving CRISPR guide design with consensus approaches. BMC Genomics 20: 931.

      9 Braun, C.J., Bruno, P.M., Horlbeck, M.A. et al. (2016). Versatile in vivo regulation of tumor phenotypes by dCas9‐mediated transcriptional perturbation. Proc. Natl. Acad. Sci. U. S. A. 113: E3892–E3900.

      10 Brinkman, E.K., Chen, T., Amendola, M., and Van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42: e168.

      11 Chen, S., Sanjana, N.E., Zheng, K. et al. (2015). Genome‐wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160: 1246–1260.

      12 Chen, W.H., Lu, G., Chen, X. et al. (2017). OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Res. 45: D940–D944.

      13 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Res. 24: 132–141.

      14 Chow, R.D., Wang, G., Ye, L. et al. (2019). in vivo profiling of metastatic double knockouts through CRISPR‐Cpf1 screens. Nat. Methods 16: 405–408.

      15 Cohen, J. (2019). CRISPR patent fight revived. Science 365: 15–16.

      16 De Caneva, A., Porro, F., Bortolussi, G. et al. (2019). Coupling AAV‐mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 5.

      17 De Groot, R., Luthi, J., Lindsay, H. et al. (2018). Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR‐Cas9 gene perturbation screens. Mol. Syst. Biol. 14: e8064.

      18 Doench, J.G. (2018). Am i ready for CRISPR? A user's guide to genetic screens. Nat. Rev. Genet. 19: 67–80.

      19 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nat. Biotechnol. 34: 184–191.

      20 Dong, M.B., Wang, G., Chow, R.D. et al. (2019). Systematic immunotherapy target discovery using genome‐scale in vivo CRISPR screens in CD8 T cells. Cell 178: 1189–1204.e23.

      21 Ebright, R.Y., Lee, S., Wittner, B.S. et al. (2020). Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367: 1468–1473.

      22 Erard, N., Knott, S.R.V., and Hannon, G.J. (2017). A CRISPR resource for individual, combinatorial, or multiplexed gene knockout. Mol. Cell 67: 348–354. e4.

      23 Feldman, D., Singh, A., Schmid‐Burgk, J.L. et al. (2019). Optical pooled screens in human cells. Cell 179: 787–799. e17.

      24 Filippova, J., Matveeva, A., Zhuravlev, E., and Stepanov, G. (2019). Guide RNA modification as a way to improve CRISPR/Cas9‐based genome‐editing systems. Biochimie 167: 49–60.

      25 Fu, Y., Foden, J.A., Khayter, C. et al. (2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nat. Biotechnol. 31: 822–826.

      26 Ghandi, M., Huang, F.W., Jane‐Valbuena, J. et al. (2019). Next‐generation characterization of the cancer cell line encyclopedia. Nature 569: 503–508.

      27 Giladi, A., Paul, F., Herzog, Y. et al. (2018). Single‐cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20: 836–846.

      28 Ginn, S.L., Amaya, A.K., Liao, S.H.Y. et al. (2020). Efficient in vivo editing of OTC‐deficient patient‐derived primary human hepatocytes. JHEP Rep 2: 100065.

      29 Goncalves, E., Thomas, M., Behan, F.M. et al. (2020). Minimal genome‐wide human CRISPR‐Cas9 library. bioRxiv https://genomebiology.biomedcentral.com/articles/10.1186/s13059‐021‐02268‐4.

      30 Hart, T., Chandrashekhar, M., Aregger, M. et al. (2015). High‐resolution CRISPR screens reveal fitness genes and genotype‐specific cancer liabilities. Cell 163: 1515–1526.

      31 Horlbeck, M.A., Xu, A., Wang, M. et al. (2018). Mapping the genetic landscape of human cells. Cell 174: 953–967.

Скачать книгу