Genome Editing in Drug Discovery. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Genome Editing in Drug Discovery - Группа авторов страница 18
44 Murphy, K.C. (1998). Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180: 2063–2071.
45 Pavletich, N.P. and Pabo, C.O. (1991). Zinc finger‐DNA recognition: crystal structure of a Zif268‐DNA complex at 2.1 A. Science 252: 809–817.
46 Perez, E.E., Wang, J., Miller, J.C. et al. (2008). Establishment of HIV‐1 resistance in CD4+ T cells by genome editing using zinc‐finger nucleases. Nat. Biotechnol. 26: 808–816.
47 Porteus, M.H. and Baltimore, D. (2003). Chimeric nucleases stimulate gene targeting in human cells. Science 300: 763.
48 Reyon, D., Tsai, S.Q., Khayter, C. et al. (2012). FLASH assembly of TALENs for high‐throughput genome editing. Nat. Biotechnol. 30: 460–465.
49 Richardson, C.D., Ray, G.J., Dewitt, M.A. et al. (2016). Enhancing homology‐directed genome editing by catalytically active and inactive CRISPR‐Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34: 339–344.
50 Sakamoto, K.M., Kim, K.B., Kumagai, A. et al. (2001). Protacs: chimeric molecules that target proteins to the Skp1‐Cullin‐F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. U. S. A. 98: 8554–8559.
51 Sakuma, T., Nakade, S., Sakane, Y. et al. (2016). MMEJ‐assisted gene knock‐in using TALENs and CRISPR‐Cas9 with the PITCh systems. Nat. Protoc. 11: 118–133.
52 Santiago, Y., Chan, E., Liu, P.Q. et al. (2008). Targeted gene knockout in mammalian cells by using engineered zinc‐finger nucleases. Proc. Natl. Acad. Sci. U. S. A. 105: 5809–5814.
53 Sarov, M., Schneider, S., Pozniakovski, A. et al. (2006). A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3: 839–844.
54 Scherer, S. and Davis, R.W. (1979). Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. U. S. A. 76: 4951–4955.
55 Shalem, O., Sanjana, N.E., Hartenian, E. et al. (2014). Genome‐scale CRISPR‐Cas9 knockout screening in human cells. Science 343: 84–87.
56 Si, T., Chao, R., Min, Y. et al. (2017). Automated multiplex genome‐scale engineering in yeast. Nat. Commun. 8: 15187.
57 Skarnes, W.C., Rosen, B., West, A.P. et al. (2011). A conditional knockout resource for the genome‐wide study of mouse gene function. Nature 474: 337–342.
58 Smanski, M.J., Zhou, H., Claesen, J. et al. (2016). Synthetic biology to access and expand nature's chemical diversity. Nat. Rev. Microbiol. 14: 135–149.
59 Strathern, J.N., Klar, A.J., Hicks, J.B. et al. (1982). Homothallic switching of yeast mating type cassettes is initiated by a double‐stranded cut in the MAT locus. Cell 31: 183–192.
60 Strecker, J., Ladha, A., Makarova, K.S. et al. (2020). Response to Comment on “RNA‐guided DNA insertion with CRISPR‐associated transposases”. Science 368: eabb2920.
61 Su, T., Liu, F., Gu, P. et al. (2016). A CRISPR‐Cas9 assisted non‐homologous end‐joining strategy for one‐step engineering of bacterial genome. Sci. Rep. 6: 37895.
62 Suzuki, K., Tsunekawa, Y., Hernandez‐Benitez, R. et al. (2016). in vivo genome editing via CRISPR/Cas9 mediated homology‐independent targeted integration. Nature 540: 144–149.
63 Szostak, J.W., Orr‐Weaver, T.L., Rothstein, R.J., and Stahl, F.W. (1983). The double‐strand‐break repair model for recombination. Cell 33: 25–35.
64 Thomas, K.R., Folger, K.R., and Capecchi, M.R. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell 44: 419–428.
65 Tsai, S.Q., Wyvekens, N., Khayter, C. et al. (2014). Dimeric CRISPR RNA‐guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32: 569–576.
66 Urnov, F.D., Miller, J.C., Lee, Y.L. et al. (2005). Highly efficient endogenous human gene correction using designed zinc‐finger nucleases. Nature 435: 646–651.
67 Valenzuela, D.M., Murphy, A.J., Frendewey, D. et al. (2003). High‐throughput engineering of the mouse genome coupled with high‐resolution expression analysis. Nat. Biotechnol. 21: 652–659.
68 Wang, H.H., Isaacs, F.J., Carr, P.A. et al. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894–898.
69 Webber, B.R., Lonetree, C.L., Kluesner, M.G. et al. (2019). Highly efficient multiplex human T cell engineering without double‐strand breaks using Cas9 base. Nat. Commun. 10: 5222.
70 Yang, Y. and Seed, B. (2003). Site‐specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat. Biotechnol. 21: 447–451.
71 Yin, J., Zhu, H., Xia, L. et al. (2015). A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res. 43: e36.
72 Zhang, Y., Buchholz, F., Muyrers, J.P., and Stewart, A.F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20: 123–128.
3 CRISPR Cas: From Bacterial Adaptive Immunity to the Swiss Army Knife of Drug Discovery
Saša Šviković
Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
3.1 Introduction
Over the course of billions of years of evolution, prokaryotes have developed multiple ways to stay ahead of their fiercest foes, mobile genetic elements. These defense systems include a variety of nucleases, DNA‐modifying enzymes, chemical inhibitors, cell death‐inducing signaling pathways, and some not yet fully understood protection systems (Bernheim and Sorek 2020; Hampton et al. 2020). These systems are incredibly diverse and widespread among prokaryotes, and studies into how these systems function ultimately led to the rise of new tools that have revolutionized biomedical sciences. Similarly to how the discovery of an innate bacterial immune system mediated by restriction endonucleases has ushered a revolution in biotechnology (Roberts 2005), the relatively recent discovery of CRISPR‐Cas systems, an adaptive immune component of prokaryotic defense systems, and their application in genome engineering has completely changed the way how research in life sciences is done. In this Chapter, we will address the basics of CRISPR biology, the diversity and current classification schemes, and how the mechanistic understanding of these diverse systems can give rise to novel tools for biomedical science.
3.2 CRISPR Biology in a Nutshell
CRISPR, or Clustered Regularly Interspaced Short Palindromic Repeats, represents an adaptive immune system of microbes, able to adapt in response to invasions by mobile genetic elements such as bacteriophages, plasmids, and transposons. The locus encoding for the components of the CRISPR system was discovered as an array of palindromic repeats interrupted by a 20–40 nt sequence downstream of the iap gene in Escherichia coli (Ishino et al. 1987; Nakata et al. 1989). Thanks to the increasing availability of sequences from the microbial species, the structure of CRISPR loci, with many properties relating to