Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций. Крис Уоринг

Чтение книги онлайн.

Читать онлайн книгу Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций - Крис Уоринг страница 4

Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций - Крис Уоринг

Скачать книгу

часть экспозиции находилась под постоянным наблюдением хотя бы одного охранника. Как эффективно решить поставленную задачу?

      Мы должны обратиться к математической логике и попытаться мыслить геометрически. Давайте начнем рассуждать о помещении и его безопасности на языке математики. Итак: обозначьте необходимое количество охранников буквой g, а затем посмотрите, получится ли уменьшить это значение. Прежде всего вам нужно разобраться в многоугольниках (полигонах).

      Многоугольники – плоские фигуры с прямыми сторонами. В большинстве случаев план помещения представляет собой совокупность многоугольников, которые в основном (но не всегда, что можно увидеть на представленной ниже планировке) имеют прямые углы.

      Многоугольники принято называть по количеству сторон. Треугольник представляет собой многоугольник с тремя сторонами (для полигона это число сторон является минимально возможным). Если склеить два треугольника, сторона к стороне, получится четырехсторонняя фигура, известная как четырехугольник.

      Четырехугольники – прямоугольник, квадрат, трапеция, дельтоид, параллелограмм и ромб. Добавьте к двум склеенным треугольникам еще один, и образуется пятиугольник – многоугольник с пятью сторонами. Приклеивая новые и новые треугольники, вы увеличиваете количество сторон полигона.

      Многоугольники бывают выпуклыми и невыпуклыми. У первых все внутренние углы меньше 180°: это означает, что, если вы смотрите на фигуру со стороны, вам кажется, будто ее стороны, как и углы, выдаются вперед, то есть являются выпуклыми. У многоугольников второй разновидности, невыпуклых, как минимум пара-тройка внутренних углов больше 180°, и появляется ощущение, что углы направлены внутрь фигуры.

      Вообразите, что находитесь в комнате, план которой выглядит как выпуклый многоугольник. Где бы вы ни стояли, для обзора доступен любой угол. Если выражаться математическим языком, у вас есть возможность провести прямую от своего местоположения к каждой точке в помещении. В таком контексте линия будет означать направление обзора, а значит, для охраны любой выпуклой комнаты хватит одного человека.

      К сожалению, проектировщик зала математического искусства хотел блеснуть оригинальностью или, возможно, просто увеличить площадь экспозиции, поэтому помещение приобрело вид невыпуклого многоугольника с 28 сторонами – икосиоктагона, если использовать точный термин. Точки внутри помещения, из которой можно провести прямую линию в любую часть многоугольника, не пересекая его сторон, не существует, и потому у нас есть все основания заявить: для наблюдения понадобится больше одного охранника. Итак, нам известно, что g > 1. Наверное, это и так было очевидно, однако теперь у нас появилась отправная точка.

      Как уже было сказано, многоугольник можно собрать из треугольников. И, как вы, вероятно, помните со школьных времен, внутренние углы последних составляют в сумме 180°. У треугольника

Скачать книгу