Против богов. Укрощение риска. Питер Бернстайн
Чтение книги онлайн.
Читать онлайн книгу Против богов. Укрощение риска - Питер Бернстайн страница 28
Допустим, вторая команда уже выиграла одну игру. Каково число разных последовательностей результатов, возможных в шести играх, и какие из этих побед и поражений приведут вашу команду к победам в четырех играх, необходимым для выигрыша? Ваша команда может выиграть вторую игру, проиграть третью и затем выиграть последующие три. Она может проиграть две игры подряд и выиграть последующие четыре. Или она может выиграть нужные четыре игры сразу, оставив команду-соперника только с одним выигрышем. Сколько существует возможных комбинаций побед и поражений в серии из шести игр? Треугольник дает ответ на этот вопрос. Все, что вам нужно, вы найдете в соответствующей строке.
Заметьте, что вторая строка треугольника, строка с шансами 50 на 50, моделирует задачу о семье, имеющей одного ребенка, или задачу об одном броске монеты и описывает события с числом исходов, равным 2. Следующая строка показывает распределение исходов в задаче о семье с двумя детьми или в задаче о двух бросках монеты и описывает события, у которых число возможных исходов равно 4, или 22. Следующая строка описывает события с числом исходов, равным 8, или 23, и показывает распределение исходов в задаче о семье с тремя детьми. В задаче с шестью играми, оставшимися для определения победителя турнира, вам нужно рассмотреть строку с числом возможных исходов 26, то есть с 64 возможными последовательностями побед и поражений[23]. Последовательность чисел в этой строке такова:
Помните, что вашей команде для победы нужно выиграть еще четыре игры, а команде соперников нужны только три победы. Возможен случай, когда ваша команда выиграет все игры, а ее соперники не одержат ни одной победы; число 1 в начале строки относится к этому случаю. Следующее число 6. Оно фиксирует шесть разных возможных последовательностей исходов, при осуществлении которых ваша команда В выиграет турнир, а ее соперники С выиграют только одну игру:
И существует пятнадцать разных возможных последовательностей исходов, при осуществлении которых ваша команда выиграет четыре игры, в то время как команда соперников победит дважды.
Все остальные комбинации в конце концов приводят к трем нужным для победы соперников выигрышам их команды и меньшему, чем необходимо для победы вашей команды (напоминаем: ей нужны четыре победы), числу ее выигрышей. Это значит, что существует 1 + 6 + 15 = 22 комбинации, при осуществлении которых ваша команда победит после поражения в первом матче, и 42 комбинации, при которых чемпионом станет команда соперников. В результате вероятность того, что после первого поражения ваша команда в оставшихся шести играх выиграет четыре прежде, чем команда соперников выиграет три, равна 22/64 или чуть больше одной третьей.
Из примера следует еще кое-что. Зачем ваша команда будет играть все шесть оставшихся игр в последовательности,
23
Математики заметят, что Паскаль на самом деле ввел здесь биномиальное распределение, или коэффициенты возведения (a + b) в степени, представленные целыми числами. Например, первой строке соответствует (a + b)0 = 1, в то время как четвертой строке соответствует (а + b)3 = 1 а3 + 3а2b + 3аb2 + 1b3.