Predicting Heart Failure. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Predicting Heart Failure - Группа авторов страница 14

Predicting Heart Failure - Группа авторов

Скачать книгу

Guidi et al. [24] was designed to help non-field experts make decisions in the analysis of HF. The system is based on three functional parts: diagnosis (severity assessment), prognosis, and follow-up. Four artificial intelligence techniques are used in the diagnostic function: artificial neural network (ANN), SVM, decision tree, and a fuzzy system with genetic algorithm support. A new technique for identifying HF patients using spectral analysis and neural networks was investigated in a study by Elfadil et al. [25]. A data set was used in the study, with 17 of the 53 samples being normal and the rest being patients. HF patients were divided into four groups with an accuracy of 83.65%.

      1.6 Machine Learning Supported Diagnosis

      Invasive and non-invasive methods offer a wealth of diagnostic information. However, the interpretation of the available information can only be possible with the help of a physician. The increase in heart patients and the increase in patient data in parallel make it difficult to evaluate the data and extract information from them day by day. The intersection of the symptoms of heart disease with the symptoms of other diseases also makes the diagnosis of the disease a difficult problem. For this reason, there is a need to evaluate the data obtained with the help of invasive and non-invasive techniques with intelligent analysis tools in order to increase the diagnostic accuracy. Artificial intelligence and machine learning will assist physicians in intelligent analysis. Machine learning models trained with past patient data can be used to diagnose future cases. With the diagnostic capabilities to be gained by the machines, it will sometimes be possible for them to diagnose more precisely and more sensitively than the physicians. Supporting decision support systems working in expert systems logic with machine learning models will enable them to give better results.

      1.6.1 Introduction to Machine Learning

      Disease prediction and diagnosis can be made with the help of machine learning models. Disease diagnosis applications have been developed and used extensively, especially with controlled machine learning techniques. This technique has enabled models to be created from historical data and these models have sometimes been used in diagnosis and treatment. Developing a system based on machine learning is not just about developing machine learning algorithms, but rather it is done by working on data step by step from start to finish in a way similar to the data mining process. For example, determining which variables are important and which are not important in the solution of a problem directly affects the quality of the solution. This process, called feature selection, determines which parameters will be used in the system to be installed. The feature selection process is often achieved by establishing the correct relationships between targeted data and predictive data.

      The feature selection phase is followed by feature transformation. Data transformation, which is a method that improves data quality, has recently emerged as feature engineering, which includes feature studies performed to increase prediction success. Like feature selection, feature engineering will also affect the success of the result. Both feature selection and feature engineering also solve the problem of high dimensionality in data. Loss of data and methods of combating loss are also important. The fight against lost values ​​is sometimes carried out by estimating the lost value and sometimes by replacing it with other values.

      The most prominent techniques – supervised and unsupervised learning – will be explained in the following paragraphs.

      1.6.2 Machine Learning Algorithms

      Figure 1.2 Supervised and unsupervised machine learning.

      1.6.2.1 Supervised Learning

      Supervised learning consists of two basic steps: creating a model with labeled data and testing with untagged data, the two prominent techniques in the category of supervised learning algorithms. Classification, one of the two prominent techniques in the category of supervised learning algorithms, is a supervised learning technique in which the target variable is of categorical type, while regression, the other prominent technique, is of the numerical type of the target variable. Operations are performed based on a model in which the target variable calculated from predictive variables is estimated. The purpose of classification is to assign records seen for the first time to one of the predefined categories. Identification and modeling of categories takes place with the help of training data. Training data and machine learning algorithms come together to form machine learning models. Machine learning models also match the records to the classroom that suits them best.The most important feature that distinguishes supervised learning from unsupervised learning is label information in supervised data. It is the class label in the data that provides the control. Although the output of both methods is different, the goal is to estimate the value of the output variable based on input variables.

      1.6.2.1.1 Decision Trees

      1.6.2.1.2 Naive Bayes

Скачать книгу