Predicting Heart Failure. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Predicting Heart Failure - Группа авторов страница 17

Predicting Heart Failure - Группа авторов

Скачать книгу

in ambulatory electrocardiograms using a deep neural network. Nature Medicine 25 (1): 65.

      6 6 Shamsham, Fadi, M.D.and Mitchell, Judith, M.D. (2000). Essentials of the diagnosis of HF. AFP Journal. Mar. 1, 2000. https://www.aafp.org/afp/2000/0301/p1319.html.

      7 7 Ponikowski, P., Voors, A.A., Anker, S.D., et al. (2016). ESC guidelines for the diagnosis and treatment of acute and chronic HF: The Task Force for the diagnosis and treatment of acute and chronic HF of the European Society of Cardiology (ESC). Developed with the special contribution of the HF Association (HFA) of the ESC. European Journal of Heart Failure 18 (8) (2016): 891–975.

      8 8 Attia, Z.I., Kapa, S., Lopez-Jimenez, F., et al. (2019). Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine 25 (1) (2019): 70.

      9 9 Non-Invasive Tests and Procedures. Heart Attack and Stroke Symptoms. https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/noninvasive-tests-and-procedures. Access date: May 20, 2021.

      10 10 Haider, D., Yang, X., and Abbasi, Q.H. (2019). Post-surgical fall detection by exploiting the 5 G C-Band technology for eHealth paradigm. Applied Soft Computing 81: 105537.

      11 11 Sahoo, S.P.and Ari, S. (2019). On an algorithm for human action recognition. Expert Systems With Applications 115: 524–534.

      12 12 Li, C., Hu, X., and Zhang, L. (2017). The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Computer Science 112: 2328–2334. (2017).

      13 13 Yahaya, S.W., Lotfi, A., and Mahmud, M.A. (2019). Consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Applied Soft Computing 83: 105613.

      14 14 Tripoliti, E.E., et al. (2017). Heart Failure: Diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Computational and Structural Biotechnology Journal 15: 26–47.

      15 15 Ledley, R.S.and Lusted, L.B. (1959). Reasoning foundations of medical diagnosis: Symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science 130: 9–21.

      16 16 Shortliffe, E.H.and Sepulveda, M.J. (2018). Clinical decision support in the era of artificial intelligence. JAMA 320: 2199–2200.

      17 17 Jackson, P. (1998). Introduction to Expert Systems (3rd ed.). Addison Wesley.

      18 18 IBM Cloud Education. Machine Learning... https://www.ibm.com/cloud/learn/machine-learning. Access date: 15 July 2020.

      19 19 Yang, J., Wang, Y., Liu, Y., Tang, S., and Chen, W. (2009). Novel approach for 3-D reconstruction of coronary arteries from two uncalibrated angiographic images. IEEE Transactions on Image Processing 18 (7): 1563–1572.

      20 20 SainiSai, S, K., Dewal, M., and Rohit, M. (2011). A fast region-based active contour model for boundary detection of echocardiographic images. Journal of Digital Imaging: The Official Journal of the Society for Computer Applications in Radiology 25: 271–278. doi:10.1007/s10278-011-9408-8.

      21 21 Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., and Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology 69 (2017): 2657–2664.

      22 22 Murdoch, T.B.and Detsky, A.S. (2013). The inevitable application of big data to health care. Journal of the American Medical Association 309 (13): 1351–1352. 2013.

      23 23 Yang, G., Ren, Y., Pan, Q., and Ning, G. (2010). A HF diagnosis model based on support vector machine. IEEE International Conference on Biomedical Engineering and Informatics Vol. 3: 1105–1108.

      24 24 Guidi, G., Iadanza, E., Pettenati, M.C., Milli, M., Pavone, F., and Biffi Gentili, G. (2012). Heart failure artificial intelligence-based computer aided diagnosis telecare system. In: Impact Analysis of Solutions for Chronic Disease Prevention and Management, 7251 (ed. M. Donnelly, C. Paggetti, C. Nugent, and M. Mokhtari), ICOST 2012. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-30779-9_44.

      25 25 Elfadil, N.and Ibrahim, I. (2011). Self organizing neural network approach for identification of patients with congestive HF. International Conference on Multimedia Computing and Systems (ICMCS) 1–6.

      26 26 Gharehchopogh, F.S., Mohammadi, P., and Hakimi, P. (2012). Application of decision tree algorithm for data mining in healthcare operations: A case study. International Journal of Computer Applications (IJCA) 52 (6): 21–26. August 2012.

      27 27 Candelieri, A.and Conforti, D. (2010). A hyper-solution framework for SVM classification: Application for predicting destabilizations in chronic HF patients. The Open Medical Informatics Journal 4: 136–140.

      28 28 Pecchia, L., Melillo, P., and Bracale, M. (2011). Remote health monitoring of HF with data mining via CART method on HRV features. IEEE Transactions on Bio-Medical Engineering 58: 800–804.

      29 29 Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.

      30 30 Joyce, J. (2003). Bayes’ Theorem. In: The Stanford Encyclopedia of Philosophy (Spring 2019 ed.) (ed. E.N. Zalta). Metaphysics Research Lab. Stanford University. Retrieved Jan. 17, 2020.

      31 31 Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. New York, NY, USA: Springer-Verlag.

      32 32

Скачать книгу