Drug Transporters. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Drug Transporters - Группа авторов страница 64
104 [104] Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbe S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93 (3):1289–1315.
105 [105] Coyne ES, Wing SS. The business of deubiquitination ‐ location, location, location. F1000Res 2016; 5:163.
106 [106] Zhang J, Liu C, You G. Ubiquitin‐specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1. Biochim Biophys Acta Gen Subj 2020;1864 (12):129701.
107 [107] Hunter T, Sun H. Crosstalk Between the SUMO and Ubiquitin Pathways. In: Jentsch S, Haendler B, editors. The Ubiquitin System in Health and Disease. Ernst Schering Foundation Symposium Proceedings. Volume 2008/1, Berlin, Heidelberg: Springer; 2008. doi: https://doi.org/10.1007/2789_2008_098.
108 [108] Wang H, Zhang J, You G. Activation of protein kinase A stimulates SUMOylation, expression, and transport activity of organic anion transporter 3. AAPS J 2019; 21 (2):30.
109 [109] Duan P, Li S, You G. Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter. Eur J Pharmacol 2010; 627 (1–3):49–55.
110 [110] Li S, Duan P, You G. Regulation of human organic anion transporter 1 by ANG II: involvement of protein kinase Calpha. Am J Physiol Endocrinol Metab 2009; 296 (2):E378–E383.
111 [111] Zhang J, Liu C, You G, AG490, a JAK2‐specific inhibitor, downregulates the expression and activity of organic anion transporter‐3. J Pharmacol Sci 2018; 136 (3):142–148.
112 [112] Wang H, Liu C, You G. The activity of organic anion transporter‐3: role of dexamethasone. J Pharmacol Sci 2018; 136 (2):79–85.
113 [113] Wang H, Zhang J, You G. The mechanistic links between insulin and human organic anion transporter 4. Int J Pharm 2019; 555:165–174.
114 [114] Emami Riedmaier A, Nies AT, Schaeffeler E, Schwab M. Organic anion transporters and their implications in pharmacotherapy. Pharmacol Rev 2012; 64 (3):421–449.
115 [115] Nagle MA, Truong DM, Dnyanmote AV, Ahn SY, Eraly SA, Wu W, Nigam SK. Analysis of three‐dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J Biol Chem 2011; 286 (1):243–251.
116 [116] Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol 2007; 293 (4):F1332–F1341.
117 [117] Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 2008; 294 (4):F867–F873.
118 [118] Vanwert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol 2008; 74 (1):122–131.
119 [119] Torres AM, Dnyanmote AV, Bush KT, Wu W, Nigam SK. Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury‐induced kidney injury. J Biol Chem 2011; 286 (30):26391–26395.
120 [120] Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res 2011; 10 (6):2842–2851.
121 [121] Wu W, Bush KT, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep 2017; 7 (1):1–9.
122 [122] Eraly SA, Vallon V, Rieg T, Gangoiti JA, Wikoff WR, Siuzdak G, Barshop BA, Nigam SK. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics 2008; 33 (2):180–192.
123 [123] Granados JC, Richelle A, Gutierrez JM, Zhang P, Zhang X, Bhatnagar V, Lewis NE, Nigam SK. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J Biol Chem 2021; 296:100575.
124 [124] Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock‐out mice. J Biol Chem 2006; 281 (8):5072–5083.
125 [125] Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, Ahn SY, Mahapatra NR, Mahata SK, Gangoiti JA, Wu W, Barshop BA, Siuzdak G, Nigam SK. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol (2008); 19 (9):1732–1740.
126 [126] Nagle MA, Wu W, Eraly SA, Nigam SK. Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci Lett 2013; 534:133–138.
127 [127] Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi‐level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem 2008; 283 (13):8654–8663.
128 [128] VanWert AL, Sweet DH. Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact of reduced folates. Pharm Res 2008; 25 (2):453–462.
129 [129] Granados JC, Nigam AK, Bush KT, Jamshidi N, Nigam SK. A key role for the transporter OAT1 in systemic lipid metabolism. J Biol Chem 2021; 296:100603.
130 [130] Duan P, Li S, Ai N, Hu L, Welsh WJ, You G. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol Pharm 2012; 9 (11):3340–3346.
131 [131] Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, Nigam SK. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem 2007; 282 (33):23841–23853.
132 [132] Kouznetsova VL, Tsigelny IF, Nagle MA, Nigam SK. Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporter‐organic anion transporter1 (Oat1). Bioorg Med Chem 2011; 19 (11):3320–3340.
133 [133] Liu HC, Goldenberg A, Chen Y, Lun C, Wu W, Bush KT, Balac N, Rodriguez P, Abagyan R, Nigam SK. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine‐learning approach. J Pharmacol Exp Ther 2016; 359 (1):215–229.
134 [134] Lai RE, Jay CE, Sweet DH. Organic solute carrier 22 (SLC22) family: potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26 (2):S45–S60.
135 [135] An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (oat1)–mediated transport. Drug Metab Dispos 2014; 42 (9):1357–1366.
136 [136] Wang X, Morris ME. Diet/nutrient interactions with drug transporters. In: You G, Morris ME, editors. Drug Transporters: Molecular Characterization and Role in Drug Disposition. Wiley; 2014. p 409–432.
137 [137] Wang L, Sweet DH. Interaction of natural dietary and herbal anionic compounds and flavonoids with human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evid Based Complement Alternat Med 2013; 2013:612527. doi: https://doi.org/10.1155/2013/612527.
138 [138]