Drug Transporters. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Drug Transporters - Группа авторов страница 65

Drug Transporters - Группа авторов

Скачать книгу

Chinese medicines: protective effect of Apigenin against imipenem‐induced nephrotoxicity. Phytother Res 2020; 34 (11):2998–3010.

      139 [139] Kang YJ, Lee CH, Park S‐J, Lee HS, Choi M‐K, Song I‐S. Involvement of organic anion transporters in the pharmacokinetics and drug interaction of rosmarinic acid. Pharmaceutics 2021; 13 (1):83.

      140 [140] Kawasaki T, Kondo M, Hiramatsu R, Nabekura T. (−)‐Epigallocatechin‐3‐gallate inhibits human and rat renal organic anion transporters. ACS Omega 2021; 6 (6):4347–4354.

      141 [141] Li C, Wang X, Bi Y, Yu H, Wei J, Zhang Y, Han L, Zhang Y. Potent inhibitors of organic anion transporters 1 and 3 from natural compounds and their protective effect on aristolochic acid nephropathy. Toxicol Sci 2020; 175 (2):279–291.

      142 [142] Wu W, Jamshidi N, Eraly SA, Liu HC, Bush KT, Palsson BO, Nigam SK. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos 2013; 41 (10):1825–1834.

      143 [143] McAdams‐DeMarco MA, Maynard JW, Baer AN, Kao LW, Kottgen A, Coresh J. A urate gene‐by‐diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis 2013; 72 (5):701–706.

      144 [144] Jansen J, Jansen K, Neven E, Poesen R, Othman A, van Mil A, Sluijter J, Torano JS, Zaal EA, Berkers CR. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome‐derived organic anion secretion. Proc Natl Acad Sci 2019; 116 (32):16105–16110.

      145 [145] Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos 2015; 43 (10):1522–1535.

      146 [146] Fan Y, Liang Z, Zhang J, You G. Oral proteasomal inhibitors ixazomib, oprozomib, and delanzomib upregulate the function of organic anion transporter 3 (OAT3): implications in OAT3‐mediated drug‐drug interactions. Pharmaceutics 2021; 13 (3):314.

      147 [147] Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 2007; 104 (6):1777–1782.

      148 [148] Liu HC, Jamshidi N, Chen Y, Eraly SA, Cho SY, Bhatnagar V, Wu W, Bush KT, Abagyan R, Palsson BO. An organic anion transporter 1 (OAT1)‐centered metabolic network. J Biol Chem 2016; 291 (37):19474–19486.

      149 [149] Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson A, Gonzalez GAP, Aurich MK. Recon3D enables a three‐dimensional view of gene variation in human metabolism. Nat Biotechnol 2018; 36 (3):272.

      150 [150] Yee SW, Giacomini MM, Hsueh CH, Weitz D, Liang X, Goswami S, Kinchen JM, Coelho A, Zur AA, Mertsch K. Metabolomic and genome‐wide association studies reveal potential endogenous biomarkers for OATP1B1. Clin Pharmacol Ther 2016; 100 (5):524–536.

      151 [151] Bush KT, Wu W, Lun C, Nigam SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut–liver–kidney axis. J Biol Chem 2017; 292 (38):15789–15803.

      152 [152] Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 2019; 15 (5):301–316.

      153 [153] Bush KT, Singh P, Nigam SK. Gut‐derived uremic toxin handling in vivo requires OAT‐mediated tubular secretion in chronic kidney disease. JCI Insight 2020; 5 (7):e133817.

      154 [154] Lowenstein J, Nigam SK. Uremic toxins in organ crosstalk. Front Med 2021; 8:457.

      155 [155] Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol 2012; 7:99–122.

      156 [156] Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc 2017; 6 (2):e005022.

      157 [157] Naud J, Nolin TD, Leblond FA, Pichette V. Current understanding of drug disposition in kidney disease. J Clin Pharmacol 2012; 52 (1 Suppl):10S–22S.

      158 [158] Brandoni A, Hazelhoff MH, Bulacio RP, Torres AM. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis. World J Gastroenterol 2012; 18 (44):6387–6397.

      159 [159] Nigam SK, Bhatnagar V. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr Opin Nephrol Hypertens 2018; 27 (4):305.

      160 [160] Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 2012; 19 (6):358–371.

      161 [161] Mount DB. The kidney in hyperuricemia and gout. Curr Opin Nephrol Hypertens (2013); 22 (2):216–223.

      162 [162] Anzai N, Jutabha P, Amonpatumrat‐Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome‐wide association studies. Clin Exp Nephrol 2012; 16 (1):89–95.

      163 [163] Bhatnagar V, Richard EL, Wu W, Nievergelt CM, Lipkowitz MS, Jeff J, Maihofer AX, Nigam SK. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J 2016; 9 (3):444–453.

      164 [164] Bischoff A, Bucher M, Gekle M, Sauvant C. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3. Physiol Rep 2014; 2 (2):e00243.

      165 [165] Lowenstein J, Grantham JJ. The rebirth of interest in renal tubular function. Am J Physiol Renal Physiol 2016; 310 (11):F1351–F1355.

      166 [166] Schneider R, Meusel M, Betz B, Held C, Möller‐Ehrlich K, Büttner‐Herold M, Wanner C, Gekle M, Sauvant C. Oat1/3 restoration protects against renal damage after ischemic AKI. Am J Physiol Renal Physiol 2015; 308 (3):F198–F208.

      167 [167] Saigo C, Nomura Y, Yamamoto Y, Sagata M, Matsunaga R, Jono H, Nishi K, Saito H. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters. Drug Des Devel Ther 2014; 8:1073–1082.

      168 [168] Saito H, Yoshimura M, Saigo C, Komori M, Nomura Y, Yamamoto Y, Sagata M, Wakida A, Chuman E, Nishi K, Jono H. Hepatic sulfotransferase as a nephropreventing target by suppression of the uremic toxin indoxyl sulfate accumulation in ischemic acute kidney injury. Toxicol Sci 2014; 141 (1):206–217.

      169 [169] Bischoff A, Bucher M, Gekle M, Sauvant C. Differential effect of COX1 and COX2 inhibitors on renal outcomes following ischemic acute kidney injury. Am J Nephrol 2014; 40 (1):1–11.

      170 [170] Preising C, Schneider R, Bucher M, Gekle M, Sauvant C. Regulation of expression of renal organic anion transporters OAT1 and OAT3 in a model of ischemia/reperfusion injury. Cell Physiol Biochem 2015; 37 (1):1–13.

      171 [171] Pannu N, Nadim MK. An overview of drug‐induced acute kidney injury. Crit Care Med 2008; 36 (4 Suppl):S216–S223.

      172 [172] Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 1999; 31 (4):971–997.

      173 [173] Guo X, Meng Q, Liu Q, Wang C, Sun H, Peng J, Ma X, Kaku T, Liu K. JBP485 improves gentamicin‐induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats. Toxicol Appl Pharmacol 2013; 271 (2):285–295.

      174 [174] Jia Y, Liu Z, Wang C, Meng Q, Huo X, Liu Q, Sun H, Sun P, Yang X, Ma X, Liu K. P‐gp, MRP2 and OAT1/OAT3 mediate the drug‐drug interaction between resveratrol and methotrexate.

Скачать книгу