Drug Transporters. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Drug Transporters - Группа авторов страница 63
66 [66] Momper JD, Yang J, Gockenbach M, Vaida F, Nigam SK. Dynamics of organic anion transporter‐mediated tubular secretion during postnatal human kidney development and maturation. Clin J Am Soc Nephrol 2019; 14 (4):540–548.
67 [67] Momper JD, Nigam SK. Developmental regulation of kidney and liver solute carrier and ATP‐binding cassette drug transporters and drug metabolizing enzymes: the role of remote organ communication. Expert Opin Drug Metab Toxicol 2018; 14 (6):561–570.
68 [68] Yacovino LL, Aleksunes LM. Renal efflux transporter expression in pregnant mice with Type I diabetes. Toxicol Lett 2012; 211 (3):304–311.
69 [69] Wegner W, Burckhardt BC, Burckhardt G, Henjakovic M. Male‐dominant activation of rat renal organic anion transporter 1 (Oat1) and 3 (Oat3) expression by transcription factor BCL6. PLoS One 2012; 7 (4):e35556.
70 [70] Eder K, Ringseis R. The role of peroxisome proliferator‐activated receptor alpha in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628 (1–3):1–5.
71 [71] Gallegos TF, Martovetsky G, Kouznetsova V, Bush KT, Nigam SK. Organic anion and cation SLC22 “drug” transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS One 2012; 7 (7):e40796.
72 [72] Martovetsky G, Bush KT, Nigam SK. Kidney versus liver specification of SLC and ABC drug transporters, tight junction molecules, and biomarkers. Drug Metab Dispos 2016; 44 (7):1050–1060.
73 [73] Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug‐metabolizing enzymes and drug transporters. Mol Pharmacol 2013; 84 (6):808–823.
74 [74] Marable SS, Chung E, Park J‐S. Hnf4a is required for the development of Cdh6‐expressing progenitors into proximal tubules in the mouse kidney. J Am Soc Nephrol 2020; 31 (11):2543–2558.
75 [75] Naud J, Michaud J, Beauchemin S, Hebert MJ, Roger M, Lefrancois S, Leblond FA, Pichette V. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos 2011; 39 (8):1363–1369.
76 [76] Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non‐renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17 (5):515–542.
77 [77] Di Giusto G, Anzai N, Ruiz ML, Endou H, Torres AM. Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride. Arch Toxicol 2009; 83 (10):887–897.
78 [78] Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Ther 2010; 125 (1):79–91.
79 [79] Lin CC, Fan HY, Kuo CW, Pao LH. Evaluation of chinese‐herbal‐medicine‐induced herb‐drug interactions: focusing on organic anion transporter 1. Evid Based Complement Alternat Med 2012; 2012:967182.
80 [80] Zhang Q, Suh W, Pan Z, You G. Short‐term and long‐term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3. Int J Biochem Mol Biol 2012; 3 (2):242–249.
81 [81] Li S, Zhang Q, You G. Three ubiquitination sites of organic anion transporter‐1 synergistically mediate protein kinase C‐dependent endocytosis of the transporter. Mol Pharmacol 2013; 84 (1):139–146.
82 [82] Xu D, Wang H, You G. An essential role of Nedd4‐2 in the ubiquitination, expression, and function of organic anion transporter‐3. Mol Pharm 2016; 13 (2):621–630.
83 [83] Duan G, Walther D. The roles of post‐translational modifications in the context of protein interaction networks. PLoS Comput Biol 2015; 11 (2):e1004049.
84 [84] Spoel SH. Orchestrating the proteome with post‐translational modifications. J Exp Bot 2018; 69 (19):4499–4503.
85 [85] Xu D, Wang H, You G. Posttranslational regulation of organic anion transporters by ubiquitination: known and novel. Med Res Rev 2016; 36 (5):964–979.
86 [86] Duan P, You G. Short‐term regulation of organic anion transporters. Pharmacol Ther 2010; 125 (1):55–61.
87 [87] Xu D, You G. Loops and layers of post‐translational modifications of drug transporters. Adv Drug Deliv Rev 2017; 116:37–44.
88 [88] Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695 (1–3):55–72.
89 [89] Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012; 81:203–229.
90 [90] Zhang Q, Hong M, Duan P, Pan Z, Ma J, You G. Organic anion transporter OAT1 undergoes constitutive and protein kinase C‐regulated trafficking through a dynamin‐ and clathrin‐dependent pathway. J Biol Chem 2008; 283 (47):32570–32579.
91 [91] Xu D, Wang H, Zhang Q, You G. Nedd4‐2 but not Nedd4‐1 is critical for protein kinase C‐regulated ubiquitination, expression, and transport activity of human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 310 (9):F821–F831.
92 [92] Xu D, Wang H, Gardner C, Pan Z, Zhang PL, Zhang J, You G. The role of Nedd4‐1 WW domains in binding and regulating human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 311 (2):F320–F329.
93 [93] Xu D, Zhang J, Zhang Q, Fan Y, Liu C, You G. PKC/Nedd4‐2 signaling pathway regulates the cell surface expression of drug transporter hOAT1. Drug Metab Dispos 2017; 45 (8):887–895.
94 [94] Wang H, You G. SGK1/Nedd4‐2 signaling pathway regulates the activity of human organic anion transporters 3. Biopharm Drug Dispos 2017; 38 (8):449–457.
95 [95] Wang H, Xu D, Toh MF, Pao AC, You G. Serum‐ and glucocorticoid‐inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4‐2. Biochem Pharmacol 2016; 102:120–129.
96 [96] Xu D, Huang H, Toh MF, You G. Serum‐ and glucocorticoid‐inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter. Int J Biochem Mol Biol 2016; 7 (1):19–26.
97 [97] Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta 2004; 1695 (1–3):189–207.
98 [98] Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10 (8):550–563.
99 [99] Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of ubiquitin‐proteasome system in neurodegenerative diseases. Front Aging Neurosci 2016; 8:303.
100 [100] Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2018; 9 (9):754–769.
101 [101] Wu Y, Kang J, Zhang L, Liang Z, Tang X, Yan Y, Qian H, Zhang X, Xu W, Mao F. Ubiquitination regulation of inflammatory responses through NF‐kappaB pathway. Am J Transl Res 2018; 10 (3):881–891.
102 [102] Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, Baek KH. The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns (GEP) 2006; 6 (3):277–284.
103 [103] Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y. MINDY‐1 is