Phosphors for Radiation Detectors. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Phosphors for Radiation Detectors - Группа авторов страница 23

Phosphors for Radiation Detectors - Группа авторов

Скачать книгу

yield from a pulse height spectrum, and does not take into account storage luminescence. If we consider the ε‐value from the definition, such an estimation in scintillators is not correct, because we do not count the contribution from the carrier storage.

      As described above, we think ionizing radiation induced luminescence can be treated as one form of unified physics, and this is why we describe these topics in one book, although they have often been treated as different scientific fields. In this case, the base of the consideration is the energy conservation law, and it strongly assumes the integration of energy in infinite time, which is a standard strategy in astrophysics because the real‐time (time‐derivative) observation is impossible. The author (Yanagida) studied astrophysics, and the consideration depends on the field of the origin. Recently, another author (Koshimizu), whose field of origin is in solid state physics, proposed a real‐time observation on the energy transportation (carrier diffusion) process, which is a key process to understanding S in the equations presented in the previous sections. Such an observation is enabled by transient absorption spectroscopy, i.e., optical absorption spectroscopy as a function of time after excitation by pulsed electron beams. Because the excited states are probed with optical absorption, their real‐time dynamics prior to scintillation can be analyzed. Actually, slow decay of the transient absorption correlates with low scintillation intensity, and is consistent with observation results based on energy conservation. Such transient spectroscopy has long been used with pulsed light, from flash lamps to laser instruments, as excitation sources to elucidate the excited states dynamics. For ionizing radiation, pulsed electron beams can be used as excitation sources. Such a measurement technique based on pulsed electron beams has also long been used to analyze the chemical reaction dynamics in radiation chemistry and is called “pulse radiolysis.” This technique can also be applied to ionizing radiation‐induced luminescence materials and gives information on energy transfer, carrier trapping, and quenching. Thus, to understand S, both energy conservation and temporal analysis‐based experiments have been used recently.

      Figure 1.11b represents a setup of PL excitation and emission spectra by using the integration sphere. Generally, PL can be observed upon UV–VIS excitation from Xe‐lamp, and we can select which luminescence center (or electron transition) can be induced by selecting the excitation wavelength using a grating. If we use the integration sphere, we can collect all the PL photons. If we define A and I as absorption, which is evaluated by the intensity of excitation light with and without the sample and PL emission intensity, respectively, we can deduce Q = I/A experimentally. The detectors for PL photons are generally grating and photodetector. PL quantum yield is a quantitative value, but generally PL is a qualitative evaluation with an arbitrary unit, since PL intensity depends on the geometry of sample setting. In common PL measurement, we do not use the integration sphere.

      (1.71)equation

      (1.72)equation

      (1.73)equation

      (1.74)equation

      where kf and knr denote rate constants of radiative and non‐radiative transitions, respectively. In this way, we can evaluate radiative and non‐radiative rate constants quantitatively.

Скачать книгу