Phosphors for Radiation Detectors. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Phosphors for Radiation Detectors - Группа авторов страница 25
The pulse height spectrum is one of the most important properties of scintillation detectors, because most of measurements in other scientific fields use integration‐type detectors, and pulse height (photon counting) type measurements is one of the original techniques in radiation and high energy physics. The detailed explanation is given in Chapter 12.
Typical experiments on dosimeters are described in Chapters 7 (TSL), 8 (OSL), and 9 (RPL). In most cases, dosimeter properties are examined by X‐ray or γ‐ray irradiation, since an accessibility of high energy photons are easier than other ionizing radiations. Especially, X‐rays are mainly used for tests of individual dosimeters, because energy and amounts of X‐rays can be controlled by bias voltage and tube current in a typical X‐ray generator. In evaluations of dosimeters, the irradiated dose range should be adequate for the purpose. The lower detection limit of commercial individual dosimeters is 1–100 μGy, and experiments should be conducted from these lower detection limits to ~10 Gy. In some papers, several kGy irradiations are done, although the aim is an individual dosimeter. On the other hand, if the purpose is to monitor radiation therapy, tests of several hundreds Gy to several kGy irradiation will be valid. Another important aspect is fading. If the aim is individual dosimeters, fading should be tested at about one month, and if the aim is an imaging plate typically used in a dental clinic, three to four days' tests will be adequate. In addition to these general aspects, in evaluation of TSL properties, heating rate affects peak temperatures in the glow curve. In practical applications, the heating rate is around 10 °C/s, while 0.1–1 °C/s rate is common for studies of TSL as a physical property. In actual materials, we must consider time of heat conduction, and if the heating rate is too fast, responses of materials cannot follow. With a fast heating rate, we generally observe a relatively higher glow peak temperature than the true value, although we do not have a way to know the exact true value. When we measure TSL with a very slow heating rate, an observed glow peak temperature will be close to the true value. Another detailed explanation of the measurement technique of TSL can be found in Chapter 7.
In characterizations of OSL and RPL, we generally use common systems of PL spectrum. In OSL, after the irradiation of ionizing radiation, we put the sample in a PL machine and stimulate the sample under the adequate stimulation wavelength. In some spectrofluorometers, the automatic measurement function of PL excitation spectrum is installed, and by this function, we can easily investigate the stimulation spectrum. Unlike the PL excitation spectrum, which generally shows a clear excitation band due to electron transitions of dopant, OSL stimulation spectrum generally shows a broad unclear feature. For OSL and TSL measurements, an automation type instrument (Risø TL/OSL DA‐20 reader) is widely used ([95]). Generally, this system equips β‐ray (90Sr) as an irradiation source, LED as a stimulation source for OSL having typically a 470 nm emission wavelength, and a heater for TSL measurement. One of the disadvantages of this automated system is a lack of wavelength resolution, which equals to non‐determination capability on the emission origin, and some ideas are proposed to add a function of wavelength resolution [96].
In order to investigate OSL and RPL, some important aspects should be noted in actual experiments. Typically, the stimulation wavelength of OSL is longer than the emission wavelength, and resembles the situation of upconversion. In order to distinguish them, continuous stimulation is a simple way. If the phenomenon is OSL, the emission intensity decreases under the continuous stimulation, while in the case of upconversion, the intensity is constant. In addition, the stimulation wavelength of OSL is not necessarily longer than the emission wavelength, because we cannot deny the existence of a deep trap. In such a case, distinction of OSL and RPL becomes difficult. The continuous stimulation (excitation) is also a useful technique in this situation, and if the phenomenon is OSL, the emission intensity decreases with time, while that of RPL is constant against time. But in the special case where the trap depth and excitation band overlap, clear distinction is difficult. Other experimental aspects of OSL and RPL are introduced in Chapters 8 and 9, respectively.
References
1 1. Röntgen, W.C. (1895). On a new kind of rays. Nature 53 (1369): 274–276.
2 2. Knoll, G. (2000). Radiation Detection and Measurement. Hoboken, NJ: Wiley.
3 3. Yukihara, E.G. and McKeever, S.W.S. (2011). Optically Stimulated Luminescence: Fundamentals and Applications. New York: Wiley.
4 4. Mckeever, S.W.S. (1985). Thermoluminescence of Solids. Cambridge: Cambridge University Press.
5 5. Schulman, J.H., Ginther, R.J., and Klick, C.C. (1951). Dosimetry of X‐rays and gamma‐rays by radiophotoluminescence. J. Appl. Phys. 22: 1479–1487.
6 6. Hofstadter, R. (1948). Alkali halide scintillation counters. Phys. Rev. 74: 100–101.
7 7. Weber, M.J. and Monchamp, R.R. (1973). Luminescence of Bi4Ge3O12: spectral and decay properties. J. Appl. Phys. 44: 5495–5499.
8 8. Laval, M., Moszyński, M., Allemand, R. et al. (1983). Barium fluoride – inorganic scintillator for subnanosecond timing. Nucl. Instrum. Meth. Phys. Res. 206: 169–176.
9 9. Jahn, A., Sommer, M., and Henniger, J. (2014). OSL efficiency for BeO OSL dosimeters. Radiat. Meas. 71: 104–107.
10 10. McElhaney, S.A., Ramsey, J.A., Bauer, M.L. et al. (1990). A ruggedized ZnS(Ag)/epoxy alpha scintillation detector. Nucl. Instrum. Methods Phys. Res. A. 299: 111–114.
11 11. Yanagida, T., Fujimoto, Y., Miyamoto, M. et al. (2014). Optical and scintillation properties of Cd doped ZnO film. Jpn. J. Appl. Phys. 53: 02BC13.
12 12. Kaneko, J.H., Izaki, K., Toui, K. et al. (2016). An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities. Radiat. Meas. 93: 13–19.
13 13. Maekawa, T., Sumita, A., and Makino, S. (1998). Thin Beta‐ray detectors using plastic scintillator combined with wavelength‐shifting fibers for surface contamination monitoring. J. Nucl. Sci. Technol. 35: 886–894.
14 14. Tzolov, M.B., Barbi, N.C., Bowser, C.T. et al. (2018). First‐surface scintillator for low accelerating voltage scanning electron microscopy (SEM) imaging. Microsc. Microanal. 24: 488–496.
15 15. Tanaka, H.K.M. and Yokoyama, I. (2008). Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido – contact between high‐energy physics and volcano physics. Proc. Jpn. Acad. Ser. B. 84: 107–116.
16 16. Yanagida, T., Fujimoto, Y., Yamanoi, K. et al. (2012). Optical and scintillation properties of bulk ZnO crystal. Phys. Status Solidi C 9: 2284–2287.
17 17. Yanagida, T., Fujimoto, Y., and Koshimizu, M. (2014). Evaluation of scintillation properties of GaN, e‐J. Surf. Sci. Nanotechnol. 12: 396–399.
18 18. Yanagida, T., Okada, G., Kato, T. et al. (2016). Fast and high light yield scintillation in Ga2O3 semiconductor material. Appl. Phys. Exp. 9: 042601‐1‐042601‐4.
19 19.