Phosphors for Radiation Detectors. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Phosphors for Radiation Detectors - Группа авторов страница 26
21 21. Itoh, M. and Kamada, M. (2001). Comparative study of auger‐free luminescence and valence‐band photoemission in wide‐gap materials. J. Phys. Soc. Japan 70: 3446–3451.
22 22. Yanagida, T., Kawaguchi, N., Fujimoto, Y. et al. (2010). Growth and scintillation properties of BaMgF4. Nucl. Instrum. Methods Phys. Res. A. 621: 473–477.
23 23. Moszynski, M., Allemand, R., Odru, M.L.R. et al. (1983). Recent progress in fast timing with CsF scintillators in application to time‐of‐flight positron tomography in medicine. Nucl. Instrum. Methods Phys. Res. Sect. A. 205: 239–249.
24 24. Yahaba, N., Koshimizu, M., Yan, S. et al. (2014). X‐ray detection capability of a Cs2ZnCl4 single‐crystal scintillator. Appl. Phys. Exp. 7: 062602‐1‐062602‐4.
25 25. Schotanus, P., van Eijk, C.W.E., Hollander, R.W. et al. (1985). Temperature dependence of BaF2 scintillation light yield. Nucl. Instrum. Methods Phys. Res. A. 238: 564–565.
26 26. Yanagida, T., Fujimoto, Y., Koshimizu, M. et al. (2015). Scintillation properties of CdF2 crystal. J. Lumin. 157: 293–296.
27 27. Anderson, D.F. (1989). Properties of the high‐density scintillator cerium fluoride. IEEE Trans. Nucl. Sci. 36: 137–140.
28 28. García‐Toraño, E., Caro, B., Peyrés, V. et al. (2016). Characterization of a CeBr3 detector and application to the measurement of some materials from steelworks. Nucl. Instrum. Methods Phys. Res. A. 837: 63–68.
29 29. Arai, M., Fujimoto, Y., Koshimizu, M. et al. (2020). Scintillation and photoluminescence properties of (Tl1−xAx)MgCl3 (where a = alkali metal). J. Alloys Compds 823: 153871.
30 30. Fujimoto, Y., Koshimizu, M., Yanagida, T. et al. (2016). Thallium magnesium chloride: a high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X‐ray and gamma‐ray detection. Jpn. J. Appl. Phys. 55: 090301‐1‐090301‐3.
31 31. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO transparent ceramic and single crystal. Ceram. Int. 42: 5617–5622.
32 32. Futami, Y., Yanagida, T., and Fujimoto, Y. (2014). Optical, dosimetric, and scintillation properties of pure sapphire crystals. Jpn. J. Appl. Phys 53: 02BC12.
33 33. Haas, J.T.M.d. and Dorenbos, P. (2008). Advances in yield calibration of scintillators. IEEE Trans. Nucl. Sci. 55: 1086–1092.
34 34. Masai, H., Yamada, Y., Okumura, S. et al. (2015). Photoluminescence of monovalent indium centres in phosphate glass. Sci. Rep. 5: 13646.
35 35. Masai, H., Yanagida, T., Fujimoto, Y. et al. (2012). Scintillation property of rare earth‐free SnO‐doped oxide glass. Appl. Phys. Lett. 101: 191906.
36 36. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO transparent ceramic doped with Mn2+. J. Ceram. Soc. Jpn. 124: 559–563.
37 37. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO translucent ceramic doped with Cr3+. Opt. Mater. 54: 134–138.
38 38. Grabmaier, B.C., Rossner, W., Berthold, T. et al. (eds.) (1996). Inorganic Scintillators and their Application, 29–35. Delft University Press.
39 39. Seferis, I., Michail, C., Valais, I. et al. (2014). Light emission efficiency and imaging performance of Lu2O3:Eu nanophosphor under X‐ray radiography conditions: comparison with Gd2O2S:Eu. J. Lumin. 151: 229–234.
40 40. Melcher, C.L. and Schweitzer, J.S. (1992). Cerium‐doped lutetium oxyorthosilicate – a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39: 502–505.
41 41. Pidol, L., Kahn‐Harari, A., Viana, B. et al. (2004). High efficiency of lutetium silicate scintillators, Ce‐doped LPS, and LYSO crystals. IEEE Trans. Nucl. Sci. 51: 1084, 1087.
42 42. Kamada, K., Endo, T., Tsutumi, K. et al. (2011). Composition engineering in cerium‐doped (Lu,Gd)3(Ga,Al)5O12 single‐crystal scintillators. Cryst. Growth Des. 11: 4484–4490.
43 43. Yanagida, T., Itoh, T., Takahashi, H. et al. (2007). Improvement of ceramic YAG(Ce) scintillators to (YGd)3Al5O12(Ce) for gamma‐ray detectors. Nucl. Instrum. Methods Phys. Res. A. 579: 23–26.
44 44. Baryshevsky, V.G., Korzhik, M.V., Moroz, V.I. et al. (1991). YAlO3 – Ce‐fast‐acting scintillators for detection of ionizing‐radiation. Nucl. Instrum. Methods A 58: 291–293.
45 45. van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E. et al. (2002). Scintillation properties of LaBr3: Ce3+ crystals: fast, efficient and high‐energy‐resolution scintillators. Nucl. Instrum. Methods A 486: 254–258.
46 46. Combes, C.M., Dorenbos, P., van Eijk, C.W.E. et al. (1999). Optical and scintillation properties of pure and Ce3+‐doped Cs2LiYCl6 and Li3YCl6: Ce3+ crystals. J. Lumin. 82: 299–305.
47 47. Ogino, H., Yoshikawa, A., and Nikl, M. (2006). Scintillation characteristics of Pr‐doped Lu3Al5O12 single crystals. J. Cryst. Growth 292: 239–242.
48 48. Yanagida, T., Watanabe, K., Okada, G. et al. (2018). Optical, scintillation and radiation tolerance properties of Pr‐doped pyrosilicate crystals. Jpn. J. Appl. Phys. 57: 106401.
49 49. Yanagida, T., Kamada, K., Fujimoto, Y. et al. (2010). Growth and scintillation properties of Pr doped YAP with different Pr concentrations. Nucl. Instrum. Methods A 623: 1020–1023.
50 50. Dorenbos, P., van Eijk, C.W.E., Hollander, R.W. et al. (1990). Scintillation properties of Nd3+ doped LaF3 crystals. IEEE Trans. Nucl. Sci. 37: 119–123.
51 51. Sturm, B.W., Cherepy N.J., Drury, O.B. et al. (2011) Characteristics of undoped and europium‐doped SrI2 scintillator detectors. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (SS/MIC 2011), 7
52 52. Shimizu, Y., Minowa, M., Suganuma, W. et al. (2006). Dark matter search experiment with CaF2(Eu) scintillator at Kamioka Observatory. Phys. Lett. B. 633: 195–200.
53 53. Murray, R.B. (1958). Use of Li6I(Eu) as a scintillation detector and spectrometer for fast neutrons. Nucl. Instrum. Methods 2: 237–248.
54 54. Yanagida, T., Kawaguchi, N., and Fujimoto, Y. (2011). Basic study of Europium doped LiCaAlF6 scintillator and its capability for thermal neutron imaging application. Opt. Mater. 33: 1243–1247.
55 55. Okada, G., Ueda, J., Tanabe, S. et al. (2014). Samarium‐doped oxyfluoride glass‐ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron. J. Am. Ceram. Soc. 97: 2147–2153.
56 56. Robbins, D.J. (1980). On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J. Electrochem. Soc. 127: 2694–2702.
57 57. Lempicki, A. and Wojtowicz, A.J. (1994). Fundamental limitations of scintillators. J. Lumin. 60 and 61: 942–947.
58 58. Mikhailik, V.B. and Kraus, H. (2010). Performance of scintillation materials at cryogenic temperatures. Phys. Status Solidi B 247: 1583–1599.
59 59. Dorenbos, P. (2002). Light output and energy resolution of Ce3+‐doped scintillators. Nucl.