Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Чтение книги онлайн.

Читать онлайн книгу Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic страница 108

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic

Скачать книгу

steadystates of iterative algorithms over graphs,” in Proc. of ICML, 2018, pp. 1114–1122.

      44 44 Shuman, D.I., Narang, S.K., Frossard, P. et al. (2013). The emerging field of signal processing on graphs: extending high‐dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30 (3): 83–98.

      45 45 M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in Proc. of NIPS, 2016, pp. 3844–3852.

      46 46 M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph‐structured data,” arXiv preprint arXiv:1506.05163, 2015.

      47 47 Levie, R., Monti, F., Bresson, X., and Bronstein, M.M. (2017). Cayleynets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans. Signal Process. 67 (1): 97–109.

      48 48 Micheli, A. (2009). Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Netw. 20 (3): 498–511.

      49 49 Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data‐driven traffic forecasting,” in Proc. of ICLR, 2018

      50 50 S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton‐based action recognition,” in Proc. of AAAI, 2018.

      51 51 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in Proc. of ICML, 2017, pp. 1263–1272.

      52 52 K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks,” in Proc. of ICLR, 2019

      53 53 P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” in Proc. of ICLR, 2017

      54 54 S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph representations,” in Proc. of AAAI, 2016, pp. 1145–1152

      55 55 D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proc. of KDD. ACM, 2016, pp. 1225–1234.

      56 56 T. N. Kipf and M. Welling, “Variational graph auto‐encoders,” NIPS Workshop on Bayesian Deep Learning, 2016.

      57 57 K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network embedding with regular equivalence,” in Proc. of KDD. ACM, 2018, pp. 2357–2366.

      58 58 W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong, H. Chen, and W. Wang, “Learning deep network representations with adversarially regularized autoencoders,” in Proc. of AAAI. ACM, 2018, pp. 2663–2671.

      59 59 Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep generative models of graphs,” in Proc. of ICML, 2018.

      60 60 M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small graphs using variational autoencoders,” in ICANN. Springer, 2018, pp. 412–422

      61 61 Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial‐temporal graph modeling,” in Proc. of IJCAI, 2019

      62 62 Khamsi, M.A. (2001). An Introduction to Metric Spaces and Fixed Point Theory. New York: Wiley.

      63 63 Powell, M.J.D. (1964). An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7: 155–162.

      64 64 Frasconi, P., Gori, M., and Sperduti, A. (1998). A general framework for adaptive processing of data structures. IEEE Trans. Neural Netw. 9 (5): 768–786.

      65 65 L. Almeida, “A learning rule for asynchronous perceptrons with feedback in a combinatorial environment,” in Proc. IEEE Int. Conf. Neural Netw., M. Caudill and C. Butler, Eds., San Diego, 1987, vol. 2, pp. 609–618.

      66 66 Pineda, F. (1987). Generalization of back‐propagation to recurrent neural networks. Phys. Rev. Lett. 59: 2229–2232.

      67 67 Graham, A. (1982). Kronecker Products and Matrix Calculus: With Applications. New York: Wiley.

      68 68 R. Singh, A. Chakraborty and B. S. Manoj, Graph Fourier Transform based on Directed Laplacian, https://arxiv.org/pdf/1601.03204.pdf

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SMkUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAA AAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2Vu dW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1Js dAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNyb3BXaGVuUHJpbnRpbmdib29s AAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0TGVmdGxvbmcAAAAAAAAADWNy b3BSZWN0UmlnaHRsb25nAAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcAAAAAADhCSU0D7QAAAAAAEAEs AAAAAQACASwAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAABAAAAFo4 QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0nEAAAAAAACgABAAAAAAAA AAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEA WgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP////////////////// //////////8D6AAAAAD/////////////////////////////A+gAAAAA//////////////////// /////////wPoAAAAAP////////////////////////////8D6AAAOEJJTQQAAAAAAAACAAE4QklN BAIAAAAAAAQAAAAAOEJJTQQwAAAAAAACAQE4QklNBC0AAAAAAAYAAQAAAAM4QklNBAgAAAAAABAA AAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0EGgAAAAADYwAAAAYAAAAAAAAAAAAA DAMAAAh/AAAAFwA5ADcAOAAxADEAMQA5ADcAOQAwADIAOQA3AF8AYgBhAGMAawBjAG8AdgBlAHIA AAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAACH8AAAwDAAAAAAAAAAAAAAAAAAAAAAEA AAAAAAAAAAAAAAAAAAAAAAAAEAAAAAEAAAAAAABudWxsAAAAAgAAAAZib3VuZHNPYmpjAAAAAQAA AAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcA AAwDAAAAAFJnaHRsb25nAAAIfwAAAAZzbGljZXNWbExzAAAAAU9iamMAAAABAAAAAAAFc2xpY2UA AAASAAAAB3NsaWNlSURsb25nAAAAAAAAAAdncm91cElEbG9uZwAAAAAAAAAGb3JpZ2luZW51bQAA AAxFU2xpY2VPcmlnaW4AAAANYXV0b0dlbmVyYXRlZAAAAABUeXBlZW51bQAAAApFU2xpY2VUeXBl AAAAAEltZyAAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABUb3AgbG9uZwAAAAAA AAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAMAwAAAABSZ2h0bG9uZwAACH8AAAADdXJsVEVY VAAAAAEAAAAAAABudWxsVEVYVAAAAAEAAAAAAA

Скачать книгу