Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Чтение книги онлайн.

Читать онлайн книгу Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic страница 103

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic

Скачать книгу

the neurons of the same layer. The following reasoning can also be extended to positional GNNs and networks with a different number of layers. The function hw is formally defined in terms of σj, aj, Vj , and tj

equation equation

      where images is the derivative of σj , diag is an operator that transforms a vector into a diagonal matrix having such a vector as diagonal, and images is the submatrix of V1 that contains only the weights that connect the inputs corresponding to xu to the hidden layer. The parameters w affect four components of vec(An, u), that is, a3, V2, a2 , and images. By the properties of derivatives for matrix products and the chain rule

      (5.86)equation

      holds. Thus, (vec (Ru,v)) · ∂vec(An,u)/∂w is the sum of four contributions. In order to derive a method of computing those terms, let Ia denote the a × a identity matrix. Let ⊗ be the Kronecker product, and suppose that Pa is a a2 × a matrix such that vec(diag (v) = Pa v for any vector vRa. By the Kronecker product’s properties, vec(AB) = (BIa) · vec(A) holds for matrices A, B, and Ia having compatible dimensions [67]. Thus, we have

equation

      which implies

equation

      Similarly, using the properties vec(ABC) =(CA) · vec(B) and vec(AB) =(IaA) · vec(B), it follows that

equation

      where dh is the number of hidden neurons. Then, we have

      (5.89)equation

      where the aforementioned Kronecker product properties have been used.

      holds, where images . A similar reasoning can be applied also to the third contribution.

Скачать книгу